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Abstract 

Recently, a new theoretical model has demonstrated the important contribution magnetic 

zero-field lines may have to the flux dynamics in superconductors. The local divergence in 

the current density, where flux vortices of different polarities annihilate each other, 

redistributes the current density over the superconductor cross-section and leads to a 

slowdown of the dynamics in the presence of zero-field lines in the sample. In this work, we 

explore experimentally how the contribution of these zero-field lines affects the induced 

voltage on High Temperature Superconducting (HTS) tapes. We start in the DC regime, by 

investigating the current-voltage curves of BSCCO-2223 tapes carrying different DC 

transport currents and exposed to different external DC magnetic fields. While the transport 

current naturally creates a zero-field line in the center of the tape, the external field shifts the 

position of this line and may eliminate the line altogether, depending on the levels of both, 

current and field. By varying these conditions, we show experimentally that the current-

voltage curves change with the crossover from presence to absence of a zero-field line in the 

sample. We then proceed to investigate the effects of the zero-field line in the AC regime, 

where two competing regimes of AC magnetic response were previously observed in current 

carrying HTS tapes. In the usual regime, the voltage induced by flux motion across the tape, 

is “in-phase" with the external magnetic field. However, as the field frequency grows or 

transport current decreases, there appears an unexpected, “out-of-phase" peak in the voltage 

waveform. For different conditions of external magnetic field and transport current, the two 

regimes coexist. While for some conditions of field and current the out-of-phase peak 

overwhelms the in-phase one.  The aforementioned theoretical model predicts that out-of-

phase peak in the voltage waveform is due to the inhibition effect of magnetic zero-field lines 

on flux motion. A theoretical phase diagram was presented which predicts the conditions of 

field and current for which each of the peaks in the voltage waveform dominate, and the 

conditions for which they coexist. By experimentally measuring the voltage waveforms on a 

BSCCO-2223 tape for varying conditions of transport currents and external magnetic fields 

we show that the behavior of the waveforms is in qualitative agreement with the theoretical 

phase diagram. The results in both the DC and AC regimes support the slowdown of flux 

dynamics in the presence of the magnetic zero-field line. Finally, we discovered an 

unexpected new phenomenon of asymmetry in the response of the tape which is attributed to 

the structure of our superconducting tape. This asymmetry drastically effects the voltage 

waveform in the HTS tape. By adjusting the theoretical model to account for the asymmetric 
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tape structure, we show that our results are still in qualitative agreement with the phase 

diagram. We also show that this asymmetry effects primarily the out-of-phase component of 

the voltage waveform and is more pronounced at higher field frequencies and low transport 

currents, in agreement with theoretical predictions. With the growing demand for and use of 

superconducting wires and tapes, these results may play an important role when using these 

tapes in practical applications. Specifically, the proof we provide for the slowdown of flux 

motion when annihilation lines are present, strongly recommend to aspire towards allowing 

operating conditions for HTS tapes that support such lines’ presence
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1. Introduction 

1.1. Goals of this research 

The goal of this work is to address experimentally, for the first time, the effect of magnetic 

zero-field lines, also known as annihilation lines, on the flux dynamics within high 

temperature superconducting (HTS) wires and tapes and on the voltage induced on them. We 

experimentally observe how the presence or absence of the zero-field line within the 

superconductor changes the flux dynamics both in the DC regime and in the AC regime. In 

doing so, we test the validity of existing theoretical models and predictions regarding the 

effects of the zero-field lines on the behavior of magnetic flux within the superconductor. We 

assess how these lines change the induced voltage waveforms within the superconductor and 

what this means for the practicality and feasibility of HTS wires and tapes in various high-

power applications. We determine whether magnetic zero-field lines have a positive or 

detrimental effect on the performance of HTS in different scenarios and applications and 

answer the question, should they be utilized or avoided. 

1.2. Motivation 

Most applications of superconductors today involve low temperature superconductors (LTS). 

However, due to their low operating temperatures and limited current capacity they are 

confined to a limited number of applications such as MRI and magnets for accelerators. On 

the other hand, HTS have much higher current carrying capacity and operating temperatures, 

as well as the ability to operate in stronger magnetic fields. This makes them much more 

practical to implement in various applications and they can potentially revolutionize 

countless industries[1]. A major limiting factor in the adoption of HTS until now was their 

high cost and low production output. But, recent successful experiments and prototypes of 

HTS toroidal field coils for tokamak fusion reactors has led to increasing interest and demand 

for HTS tapes, wires and cables[2]. This has led manufacturers to invest significant resources 

in expanding and improving their production capabilities. The annual production of HTS 

wires has greatly increased in the last several years and is expected to continue to drastically 

increase. Furthermore, the development of more efficient production methods has led to 

higher quality HTS and prices are expected to decrease. In turn, the growing availability of 

HTS tapes, wires and cables, and the expected reduction in prices due to the greater and more 

efficient production have led to interest in using HTS in many more fields and applications. 
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While the economical and industrial obstacles in the implementation of HTS are beginning to 

diminish, another major obstacle in the use and implementation of HTS remains. That is the 

presence of magnetic fields and their detrimental effect on the superconductor’s performance. 

Magnetic flux enters the superconductor in the form of flux quanta, called fluxons, which 

move within the superconductor due to the Lorentz force and create an electric field and 

effective resistance. These magnetic fields can either be external to the superconductor or be 

the self-field of the superconducting wire carrying a current. While the losses generated are 

small relative to losses in regular conductors, superconductors are highly sensitive to changes 

in temperature and any rise in temperature due to losses can greatly hinder the efficiency and 

performance of the superconductor. Furthermore, if dry cryogenic systems (systems that 

don’t rely on cryogenic fluid) are used in the superconducting device, any heat generated will 

increase the load on the cryogenic system and increase the energy needed to cool the 

superconductor to its operating temperature. If the device uses cryogenic fluid to maintain 

operating temperatures, the heat generated by the losses will lead to increased consumption of 

the fluid. In the worst-case scenario, these losses can lead to thermal runaway in which heat 

generated by the magnetic field losses decreases the performance of the superconductor, 

which creates more losses, which lead to more heat etc. until the superconducting phase is 

ruined, and the superconducting device becomes unusable. It is thus crucial to study and 

understand losses in superconductors and find ways to mitigate them if we are to create 

feasible superconducting appliances. 

1.3. What are magnetic zero-field lines 

Magnetic zero-field lines are places within the superconductor where the magnetic field 

equals zero (𝐵 = 0) and is of a different polarity on each side of the point where 𝐵 = 0 (i.e., 

the magnetic field changes sign). These lines are also called “annihilation lines” because they 

are the dividing line between magnetic vortices of opposite polarities. The vortices meet at 

the annihilation line and annihilate each other, hence the name and the zero magnetic field. 

Due to the inverse relation between the critical current density and magnetic field within the 

superconductor [3] the current density grows drastically in the presence of the zero-field line. 

Because the total transport current within the superconductor is constant and determined by 

the external power supply, this leads to a reduction in current density over the rest of the 

superconductor’s cross section. The current is what drives the vortices within the 

superconductor and its redistribution has dramatic effects on the flux dynamics within the 

superconductor, as will be elaborated upon in detail in this work.  



3 
 

1.4. Sources of losses in superconductors 

Energy losses in superconductors can arise from the motion of flux quanta – fluxons – within 

the superconductor due to the Lorentz force. These fluxons are made of a quantized unit of 

flux in a non-superconducting core which is surrounded by a circular supercurrent which 

shields the rest of the superconductor from the magnetic flux and allows it to remain 

superconducting [4]. These circular currents also give fluxons their other name – vortices. 

Losses due to fluxon motion take several forms including Flux Creep, Flux Flow and, for 

large enough AC magnetic field amplitudes and a DC transport current, Dynamic Resistance.  

In the presence of an external magnetic field, magnetization currents flow in the 

superconductor to screen out the magnetic field. When fluxons enter the superconductor, the 

interaction between the fluxon and the screening currents create a Lorentz force, 𝐹 = 𝑗 ×
𝐵

𝑐
, 

which acts on the fluxons in the direction perpendicular to both the screening current and the 

magnetic field, towards the center of the superconductor. Due to the said Lorentz force, the 

fluxons should move along the magnetic gradient. As the fluxons move, parts of the 

superconductor transition from superconducting to normal and vice versa and this will lead to 

losses in the form of heat. But the fluxons can be trapped by various strains, imperfections 

and inhomogeneities within the superconductor. These areas, known as “pinning sites”, are 

places within the superconductor where the superconductivity is weakened or nonexistent and 

thus it is energetically favorable for the fluxons to remain there. Hence the pinning sites act 

as potential wells for the fluxons.  As long as the fluxons remain trapped within the pinning 

centers, there will be no losses. But, even if the magnetic driving force is weaker than the 

pinning force, there is still a chance that the fluxon will escape the pinning center due to 

thermal fluctuations. The fluxon will then move within the superconductor until it reaches 

another pinning site, generating voltage along the way. This “jumping” of fluxons between 

pinning sites is called “flux creep”[5]. If the external field and/or the current increase, so too 

does the Lorentz force (see equation above), this effectively lowers the potential barrier of the 

pinning sites in the direction of the Lorentz force. Thus, the stronger the external magnetic 

field or the transport current, the easier it will be for the fluxons to escape via thermal 

fluctuation (in the direction of the center of the superconductor) – hence the greater the losses 

from flux creep. Moreover, the higher the temperature, the more thermal fluctuations capable 

of releasing the fluxon from the pinning site occur, hence higher temperatures facilitate more 

flux creep. If the magnetic field is large enough so that the Lorentz force is larger than the 

potential barrier of the pinning sites, or if the current is larger than 𝑗𝑐, the critical current, the 
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fluxons begin to move within the superconductor in a viscous manner driven by the local 

field gradient and diffusion mechanisms. This regime of flux dynamics is called “flux 

flow”[6]. 

 

Fig 1. Magnetic field profiles of a superconducting slab carrying a DC transport current and exposed 

to an AC magnetic field. The asymmetry in the field profiles is due to the DC transport current. The 

flux enters the slab across the magnetic gradient while the field is positive (solid line) and leaves the 

slab along the magnetic gradient while the field is negative (dashed line). In (a) and (b), the magnetic 

field amplitude is ≤ B* so no flux can cross from one side of the superconductor to the other. In (c)    

B > B* so all the flux in area 2 crosses the slab. 

 

Another source of losses is due to the entry and exit of fluxons to and from a superconducting 

wire exposed to AC magnetic field. The situation is described schematically in Fig. 1 which 

assumes an infinite slab geometry and is based on the Bean critical state model [7], [8].  In 

this model, the superconductor can carry only a limited, magnetic field independent, current 

density known as the critical current density (𝑗𝑐), and any electromotive force the 

superconductor “feels”, regardless of size, will induce this critical current density to flow 

where the magnetic field has entered the superconductor. This means that at any given point 

within the superconductor the current density is either zero, if there was is no magnetic field 

there, or ±𝑗𝑐 depending on the magnetic field direction. While the Bean model assumes that 

the critical current density is independent of the field, its extensions, such as the Kim model 

[3] [9], have adapted it to account for a field dependent current density. These models imply 

infinitely fast flux flow when 𝑗 > 𝑗𝑐, and extremely slow flux creep for 𝑗 < 𝑗𝑐. This means 
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that when j surpasses 𝑗𝑐, the fluxons will quickly flow until they reach a steady state where 

𝑗 = 𝑗𝑐, after which they will remain strongly pinned. 

The solid lines in the 3 panels of Fig. 1 describe the magnetic field gradient within the 

superconductor for 3 different external fields: B smaller, equal or larger than the full 

penetration field (i.e., the field Hp for which the induction B* reaches the center of the 

sample), when the AC magnetic field is at its maximum value in the positive direction. The 

broken lines in the figure describe the magnetic field gradient within the superconductor 

when the AC magnetic field is at its maximum value in the negative direction. When the 

superconductor is exposed to an alternating magnetic field, fluxons enter the superconductor 

from the sides and enter deeper as it increases. When the magnetic field changes direction, 

the fluxons are forced back out the way they came. The magnetic field at which vortices fully 

penetrate into the superconductor i.e., it reaches the center, is called the threshold field, or B*. 

If there is no transport current within the superconductor, or if there is a current but the AC 

field is below the threshold, the same number of fluxons that enter from each side also exit 

from that side. During a full cycle of the AC field, because they follow a closed loop, 

returning to where they began, the current source does no work and thus does not contribute 

to the losses. But, if a DC transport current flows through the superconductor, it creates a DC 

magnetic field that breaks the symmetry between the two sides of the alternating magnetic 

field. If we have both the transport current and an alternating field larger than the threshold, 

some of the fluxons that entered from one side will penetrate the superconductor to a point 

that when the field changes direction, they will be forced out of the side opposite to that from 

which they came. Now the net flux entering from one side of the superconductor is larger 

than the flux exiting that side and vice versa for the other side of the superconductor. In 

transporting flux from side to side the current source does work and thus contributes to the 

losses. This manifests in the form of voltage on the superconductor, which depends on the 

amplitude of the magnetic field (determines how many fluxons enter and exit in each cycle), 

its frequency (number of cycles per second) and the transport current (determines the 

asymmetry of the magnetic field and thus how many fluxons will reach the point where they 

will cross the superconductor). This is called “Dynamic resistance”, it was described 

independently by Adrianov [10], Ogasawara [11]–[13], Brandt-Mikitik [14] and Oomen[15] 

and experimentally verified by them. It should be noted that because the fluxons are always 

moving in the direction of the Lorentz force, the voltage generated this way is always positive 

and has double the frequency of the magnetic field. 
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In addition to losses related to the motion of fluxons in the superconductor, losses can occur 

due to other reasons. Many HTS wires and tapes, including BSCCO, are made up of many 

superconducting filaments within a normal (usually silver) matrix. Induction between these 

superconducting filaments can lead to losses, known as coupling losses[16], [17]. 

Superconducting wires and tapes also include several different layers around the 

superconductor itself, meant to provide protection from oxidation, mechanical strength and 

thermal capacity. These can be sources for different kinds of losses, such as hysteresis losses 

in magnetic materials within the wire structure, and losses from eddy currents which flow in 

the superconductor and also in the non-superconducting layers surrounding it[18]–[20]. 

In this work we focus on the losses due to the motion of magnetic flux within the 

superconductor and in particular how magnetic zero-field lines affect them. The reason for 

this is that losses due to flux motion in the superconductor, particularly for AC fields and 

currents, are well known to be significant in determining the practicality of superconducting 

devices and have been studied previously[21][22]. Yet the effect of zero-field lines on the 

flux behavior and corresponding losses in superconductors is not well studied. As we shall 

present in this work, the zero-field lines have significant effects on superconducting systems 

where there exist both a transport current and an external field. The coexistence of transport 

current and magnetic field is present in the majority of electric and high-power application 

for which HTS could be implemented. Examples include devices such as Superconducting 

Magnetic Energy Storage (SMES) systems, where current is put in a closed superconducting 

coil - thus allowing energy to be stored in the form of a magnetic field without the current 

decaying due to ohmic resistance[23]. Superconducting Fault Current Limiters (SCFCL) are 

another example. In SCFCL, a superconducting coil is used to saturate a magnetic core, an 

AC coil is wound around the magnetic core and is connected in parallel with the electric grid. 

For normal grid currents the SCFCL is a low impedance component which does not affect the 

grid. In the case of a fault current, the rise in current through the AC coil creates an AC 

magnetic field which drives the magnetic core out of saturation, leading to an increase in 

impedance and limiting the fault current[24], [25]. Both devices usually operate in a mode 

where DC current flows in a superconducting coil which is exposed to AC field and/or AC 

current ripple. For instance, in SMES, the magnetic self-field which is how the energy is 

stored also effects the efficiency of the HTS coil. And while the driven current is DC, the 

switching required when storing energy in the coil and when releasing it for use creates an 

AC current which coexists with the DC current component. In such devices, the ability to 
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predict the level of losses in the coil in a wide range of operating conditions is crucial for the 

device’s design and operation. While contributions of coupling and eddy currents to the 

losses are generally known and can be calculated for different combinations of currents and 

fields, this is not the case for the motion of fluxons as they are greatly affected by such 

conditions and act in novel and difficult to predict ways. As we will describe next, recent 

theoretical works pointed to the effect of annihilation line on slowing down vortex dynamics 

in superconductors which operate under conditions discussed here. It is the goal of this 

research work to study experimentally the dynamics of the flux motion with and without an 

annihilation line and flux-free zone in the sample, validate the theoretical predictions, 

evaluate the effect on the induced voltage and contribution to the general AC losses and point 

to ways for predicting this contribution in high-power applications. 
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2. Theory 

In this section, we will present the theoretical models that have been developed to explain the 

effect of magnetic zero-field lines on the flux dynamics and losses in HTS. We will divide 

this section into two parts. First, we will present the model and theoretical predictions for the 

DC regime – where the external magnetic field is constant. Afterwards, we will expand the 

model for the case of an AC magnetic field. 

2.1. DC regime 

As mentioned before, zero-field lines, also called “annihilation lines”, are places inside the 

superconductor where the magnetic field reverses polarity. They divide the fluxons into two 

different polarities which meet at the zero-field line and annihilate each other. Several studies 

of the different ways that annihilation lines affect superconductors have been conducted. It 

was shown by Beasley et. al.[26] that when annihilation lines exist within the 

superconductor, the annihilation of fluxons of opposing polarities leads to instabilities in the 

form of flux jumps, which manifest as erratic drops in magnetization and voltage pulses on 

the superconductor. Studies by Kapra et. al.[27] and Zadorosny et. al.[28] also showed that 

annihilation of opposing fluxons lead to jumps in the magnetization curve as well as cause an 

increase of the critical current in the superconductor. It was suggested in these studies that 

annihilation lines and the interaction between fluxons of different polarities affects flux 

dynamics and could be used in devices to manipulate flux motion. These studies were 

conducted in temperatures significantly lower than the critical temperature, currents 

significantly lower than the critical current, and magnetic fields significantly lower than the 

upper critical field of the superconductors. In these conditions the flux pinning is very strong 

and the jumps in the magnetization curve are the result of flux avalanches. These conditions 

are very different from those in this work. The temperature, current and magnetic field are 

much closer to their critical values and pinning is very weak. The dominant flux behavior is 

flux flow and the effects of the zero-field lines will be different. 

With regards to the effects of zero-field lines on flux dynamics, it has been recently shown by 

Burlachkov and Burov[29] that these zero-field lines have a strong retardation effect on flux 

motion, which manifests in relaxation experiments and magnetization curve measurements 

when the magnetic field to which the superconductor was exposed is abruptly removed. The 

model then explained in hindsight studies of magnetic AC response first conducted 

experimentally by Lukovsky et. al.[30]. It was later extended by theoretical studies by 
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Fuzailov et. al.[31]. This is due to the fact that the magnetization current density diverges at 

the zero-field line (the divergence is cut off by the magnetic penetration depth λ). Since the 

total current 𝐼 =  ∫ 𝑗(𝑥)𝑑𝑥 in the superconductor is finite, so is the total amount of 𝑗. The 

divergence of 𝑗 at a zero-field line thus “consumes” a lot of  𝑗, which leads to the 

redistribution of the current in the superconductor such that it greatly increases around the 

zero-field line and decreases everywhere else. Since the local Lorentz force driving the 

fluxons is proportional to the local current, this leads to a decrease in the driving force. 

Hence, the zero-field line slows down the fluxon dynamics in the rest of the superconductor 

and drastically changes the magnetic field profile within it.  

A common way to describe fluxon dynamics in a superconductor is the aforementioned Bean 

critical state model. However, in high temperature superconductors, the energy 𝑈0 of the 

pinning sites is small due to the short superconducting coherence length (all HTS are type II 

superconductors) [32]–[34]. Hence, the activation energy required to release fluxons from the 

pinning sites is small. In addition, HTS have high operating temperatures of around, and even 

above, liquid nitrogen (77K). The critical current density follows the relation                       

𝑗𝑐 = 𝑗𝑐0 [1 −
𝑘𝐵𝑇

𝑈0
] [33]. For low temperatures and strong pinning energies the second term on 

the right-hand side is small and not significant, but for the high 𝑇 and small 𝑈0 of HTS the 

critical current density decreases. This means that for our conditions the flux dynamics are in 

the flux flow regime and pinning is very weak. In this case, even if the current density is 

below the critical current, we still have significant (“giant”) flux creep [35] and the Bean 

model and its expansions, which assume extremely slow flux creep for  𝑗 < 𝑗𝑐, do not hold. 

To properly describe the flux dynamics in high temperature superconductors we must use the 

flux diffusion equation[34], [36]–[39]. This equation, which is derived from Maxwell’s 

equations and the Lorentz rules for field transformations, treats the fluxons as moving within 

a viscous medium whose drag coefficient is a property of the superconducting material. 
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Fig. 2. Transport current 𝐼 (red arrow) flows in the 𝑦 direction, and voltage 𝑉 

is measured along the same axis. An external magnetic field 𝐻 is applied in the 𝑧 direction. The 

magnetic vortices of opposite polarities (shown as green dashed lines with circles) enter the sample 

from both sides, move towards each other along the x axis and annihilate at the 𝐵 = 0 line. 

 

In our experiments, we study the case where the current flows only in the 𝑦 direction and the 

magnetic field is applied along the 𝑧 axis (see Fig. 2). This geometry is that of a tape carrying 

a transport current and exposed to a magnetic field perpendicular to the flat side of the tape. 

However, the theory assumes an infinite slab rather than a tape since this allows for analytical 

solution rather than a cumbersome numerical solution. Despite this assumption, we will show 

that the experiments on tapes are in qualitative agreement with the theoretical model.  

In the slab configuration, the magnetic field 𝐵, the electric field 𝐸 and the current density 𝑗 

are spatially dependent only on 𝑥. We can write the flux diffusion equation as: 

𝜕𝐵

𝜕𝑡
=  −𝑐

𝜕𝐸

𝜕𝑥
=
𝜕

𝜕𝑥
[
𝜙0
4𝜋𝜂

|𝐵|
𝜕𝐵

𝜕𝑥
exp (−

𝑈(𝑗)

𝑘𝐵𝑇
)]       (1) 

Where 𝐸 =
𝐵𝑣

𝑐
 is the induced electric field, 𝑣 is the fluxon velocity, Φ0 is the unit flux, η is 

the Bardeen-Stephen drag coefficient[39], 𝑘𝐵 is the Boltzmann constant and 𝑐 is the speed of 

light. Now we consider the DC case 
𝜕𝐵

𝜕𝑡
= 0, which reduces the equation to: 

𝐸 = −
𝜙0
4𝜋𝜂

|𝐵|
𝜕𝐵

𝜕𝑥
exp(−

𝑈(𝑗)

𝑘𝐵𝑇
) = 𝑐𝑜𝑛𝑠𝑡       (2) 
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The term 𝑐𝑜𝑛𝑠𝑡 in the equation indicates that the electric field is independent of 𝑥. Hence, the 

voltage measured between to contacts of distance 𝑙 apart is 𝑉 = 𝐸𝑙. The boundary conditions 

of the flux diffusion equation are: 

𝐵 (𝑥 = ±
𝑑

2
) = 𝐻 ∓ 𝛽𝐼       (3) 

Where the coefficient 𝛽 can be found using the condition 𝛽𝐼 =  ∫ 𝑗(𝑥)𝑑𝑥
𝑑

2

−
𝑑

2

=
2𝜋𝐼

𝑐𝑤
, which 

gives us 𝛽 =  
2𝜋

𝑐𝑤
. 

The DC flux diffusion equation was solved with these boundary conditions in the flux flow 

regime (𝑈 = 0) and was found to be: 

𝐸 = 

{
 
 

 
 
𝜙0𝐼𝐻

𝑐2𝜂𝑑𝑤
 ,                                 𝐻 > 𝛽𝐼

𝜙0[𝐻
2 + (

4𝜋2

𝑐2𝑤2) 𝐼
2]

4𝜋𝑐𝜂𝑑
 , 𝐻 < 𝛽𝐼

           (4) 

And we can see that for 𝐻 = 𝛽𝐼 i.e., 𝐵 (
𝑑

2
) = 0, which means a zero-field line has just 

crossed the edge of the superconductor, the two parts of the solution are the same. The 

solutions clearly show that the 𝐸 − 𝐼 curves of the superconductor act very differently 

depending on whether the zero-field line is present within the sample or not. In the absence of 

a zero-field line, the voltage increases quadratically to 𝐼. Whereas in the presence of a zero-

field line the voltage increases linearly with 𝐼. While the fluxons are mostly in the flux flow 

regime, in HTS there still exists some pinning at the inter-grain boundaries. This pinning 

must be taken into account, so instead of taking 𝑈 =  0 we shall take the well-established 

dependence of the activation energy 𝑈 on 𝑗: 𝑈(𝑗) =  𝑈0ln (
𝑗𝑐

𝑗
).  With this dependence, 

equation takes the form: 

|𝐸| = 𝑠|𝐵||
𝜕𝐵

𝜕𝑥
|𝑢+1 = 𝑐𝑜𝑛𝑠𝑡    (5) 

Where 𝑢 =
𝑈0

𝑘𝐵𝑇
 and 𝑠 =  

𝜙0

4𝜋𝜂
(

𝑐

4𝜋𝑗𝑐
)
𝑢

. The field profiles in the superconductor, and by 

extension, the solution for equation, are different depending on whether a zero-field line is 

present or not. In the case where there is no zero-field line, the field profiles that satisfy both 

equations are: 
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𝐵(𝑥) = (−𝑝𝑥 + 𝑞)
𝑢+1
𝑢+2           (6) 

Where: 

𝑝 =  
1

𝑑
[(𝐻 + 𝛽𝐼)

𝑢+2
𝑢+1 − (𝐻 − 𝛽𝐼)

𝑢+2
𝑢+1]       (7) 

𝑞 =
1

2
[(𝐻 + 𝛽𝐼)

𝑢+2
𝑢+1 + (𝐻 − 𝛽𝐼)

𝑢+2
𝑢+1]       (8) 

At flux flow (𝑢 = 0), Eq. 6 reproduces the field profiles shown in [31], [40]. The field 

profiles for different values of 𝑢 are shown in Fig. 3. 

 

Fig. 3. Profiles of 𝐵(𝑥) for (a) 𝛽𝐼 <  𝐻, no annihilation line; 

(b) 𝛽𝐼 >  𝐻, annihilation line 𝐵 =  0 is present. As 𝑢 grows 

(pinning increases), the 𝐵(𝑥) profiles become straighter. 

 

Fig. 3 visually shows as how the presence of a zero-field line depends both on the external 

magnetic field and the transport current. The transport current creates a self-field which has 

opposite signs at the two tape edges (∓𝛽𝐼 in Fig. 3). This means that in the absence of an 

external field the zero-field line exists near the tape’s center (Fig. 3 (b)). If an external 

magnetic field is introduced, it contributes equally to the overall field on both sides of the 
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tape and in doing so offsets the entire field gradient within the superconductor by 𝐻  and 

moves the zero-field line towards one of the tape boundaries. If the external field is greater 

than the self-field at the tape edge, that is 𝐻 > 𝛽𝐼, the magnetic field within the tape is finite 

everywhere and there is no zero-field line inside the tape (Fig. 3 (a)). Otherwise, if 𝐻 < 𝛽𝐼, 

then the zero-field line is present within the tape (Fig. 3 (b)). 

Substituting Eq. 6 into Eq. 5 gives us the electric field: 

𝐸 =
𝑠

𝑑𝑢+1
(
𝑢 + 1

𝑢 + 2
)
𝑢+1

[(𝐻 + 𝛽𝐼)
𝑢+2
𝑢+1 − (𝐻 − 𝛽𝐼)

𝑢+2
𝑢+1]

𝑢+1

        (10) 

And at 𝑢 ≫ 1 Eq. 10 becomes: 

𝐸 =
𝜙0𝐻𝐼

𝑐2𝜂𝑑𝑤
(
𝐼

𝐼𝑐
)
𝑢 1

𝑒
𝑓 (
𝛽𝐼

𝐻
) ,          𝐻 > 𝛽𝐼        (11) 

Where 𝐼𝑐 is the critical current, 𝑒 is the Euler number and 𝑓(𝑎) = (1 − 𝑎)
(𝑎−1)

2𝑎 (1 + 𝑎)
(𝑎+1)

2𝑎 .  

In the case where a zero-field line is present, the magnetic field profiles are: 

𝐵(𝑥) = −𝑠𝑖𝑔𝑛(𝑥 − 𝑥0)𝑚|𝑥 − 𝑥0|
𝑢+1
𝑢+2         (12) 

Where 𝑚𝑢+2 =
1

𝑑𝑢+1
[(𝐻 + 𝛽𝐼)

𝑢+2

𝑢+1 − (𝐻 − 𝛽𝐼)
𝑢+2

𝑢+1]
𝑢+1

and 𝑥0 is determined by the condition 

𝑚(𝑥0 +
𝑑

2
) = (𝛽𝐼 + 𝐻)

𝑢+2

𝑢+1. 

Substituting Eq. 12 into Eq. 5 we find that: 

𝐸 =
𝑠

𝑑𝑢+1
(
𝑢 + 1

𝑢 + 2
)
𝑢+1

[(𝐻 + 𝛽𝐼)
𝑢+2
𝑢+1 + (𝐻 − 𝛽𝐼)

𝑢+2
𝑢+1]

𝑢+1

        (13) 

And for 𝑢 ≫ 1, the electric field becomes: 

𝐸 =
2𝜋𝜙0𝐼

2

𝑐3𝜂𝑑𝑤2
(
𝐼

𝐼𝑐
)
𝑢 1

𝑒
𝑔 (

𝐻

𝛽𝐼
) ,          𝐻 < 𝛽𝐼         (14) 

Where 𝑔(𝑎) = (1 − 𝑎)
(1−𝑎)

2 (1 + 𝑎)
(1+𝑎)

2 , functions 𝑓(𝑎) and 𝑔(𝑎) are presented in Fig. 4. 

Both equations and provide good approximations for 𝐸(𝐼) at 𝑢 >  4. 
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Fig. 4. Functions 𝑓(𝑎) and 𝑔(𝑎) 

 

The main prediction of this theoretical model is the change in the dependence of the electric 

field on the current in the presence an annihilation line. If such a line is absent then 𝐸~𝐼𝑢+1, 

whereas if it exists within the superconductor, we obtain 𝐸~𝐼𝑢+2. The experimental 

examination of this prediction, its results and analysis and discussion of the results will be 

done in the following sections. 

2.2. AC regime 

In this section we will address the effects of zero-field lines on the flux dynamics in the case 

of an alternating external magnetic field, which were theoretically modeled in [29], [31], 

[40], [41]. We shall show how the zero-field lines greatly influence the magnetic field 

profiles, especially with growing magnetic field frequency. This will be followed by how the 

change in the magnetic field profiles gives rise to highly unusual voltage waveforms. We will 

use the same infinite slab geometry as in the previous section. 

While both the phenomena described in the previous section about the DC regime and those 

that will be described below about the AC regime are as a result of magnetic zero-field lines 

and their effect on the flux dynamics in the superconductor, there is a difference between the 
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regimes that leads to different physical phenomena. Unlike the DC regime, for AC external 

fields the experimental time window is frequency dependent. Due to the fact that the flux 

dynamics are in the flux flow regime and the fluxons are moving as if in a viscous medium, 

they lag behind the external field, and the greater the frequency, the greater the viscous drag 

and by extension the delay. This delay means that the experimental time windows observed in 

the AC regime are further back in time in comparison to those observed in the DC regime. 

Also, the fact that the external field is always changing and the internal field is constantly 

trying to follow it, while lagging behind due to the viscous drag, leads to non-linear and time 

varying field profiles within the superconductor. This, by extension, leads to non-linear and 

time varying current distribution. In this section we shall show how this non-linearity changes 

and magnifies the way zero-field lines affect the flux dynamics. 

Moreover, in the AC regime the pinning energies holding the fluxons in place are much 

weaker – which leads to more substantial flux creep and the transition to flux flow occur for 

lower temperatures, transport currents and magnetic fields. This is because alternating 

magnetic fields induce shielding currents within the superconductor and the greater the 

external magnetic field frequency, the greater the currents. These currents contribute to the 

Lorentz force driving the fluxons and effectively weakens the pinning energy.  

In terms of the magnetic field profiles in the superconductor, we shall again start with the flux 

diffusion equation seen previously in Eq. 1: 

𝜕𝐵

𝜕𝑡
=  −𝑐

𝜕𝐸

𝜕𝑥
=
𝜕

𝜕𝑥
[
𝜙0
4𝜋𝜂

|𝐵|
𝜕𝐵

𝜕𝑥
exp(−

𝑈(𝑗)

𝑘𝐵𝑇
)] 

And again, we shall start with the flux flow regime 𝑈 = 0 and the same boundary conditions 

in Eq. 3: 

𝐵 (𝑥 = ±
𝑑

2
) = 𝐻 ∓ 𝛽𝐼 

To reduce the number of variables, the problem was converted to dimensionless variables. 

Starting with dimensionless length: 𝜉 =  
𝑥

𝑑
 , where 𝑑 is the width of the wire, along which the 

fluxons are moving. In or geometry −
𝑑

2
< 𝑥 <

𝑑

2
 , which in turn means −

1

2
< 𝜉 <

1

2
 the 

dimensionless magnetic field inside the superconductor is 𝑏 =  
𝐵

𝐻𝑚𝑎𝑥
 and ℎ =  

𝐻

𝐻𝑚𝑎𝑥
 outside it, 

where 𝐻𝑚𝑎𝑥 is the amplitude of the external magnetic field. We define 𝑡̃ =  
𝑡

𝜏
 and 𝜔̃ =  𝜔𝜏 , 
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where 𝜏 =  
𝜋𝜂𝑑

2𝜙0𝐻𝑚𝑎𝑥
 is the characteristic time of the relaxation of the magnetization currents 

in the superconductor as shown in [36]. And lastly, we define the dimensionless current     

𝐼 =  
4𝜋𝐼

𝐻𝑚𝑎𝑥𝑐
. These dimensionless variables, combined with the flux flow regime  𝑈 = 0, 

reduce the flux diffusion equation to: 

𝜕𝑏

𝜕𝑡̃
=  
1

8

𝜕

𝜕𝜉
(|𝑏|

𝜕𝑏

𝜕𝜉
)       (15) 

And the boundary conditions are:  

𝑏 (𝜉 = ±
1

2
, 𝑡̃) = ℎ(𝑡̃) ∓ 𝛽𝐼      (16) 

In the context of zero-field lines, the boundary conditions imply two different regimes, one in 

which the fields at the superconductor’s boundaries are always of opposite sign i.e., there is a 

zero-field line within the superconductor the entirety of the external field cycle – this can be 

seen for example in Fig. 6, 𝜔̃ = 0.25, where the field at the edges are of opposite signs 

throughout the external field cycle and the magnetic field profile always changes sign inside 

the superconductor. And a second regime in which the fields at the edges change sign 

throughout the external field cycle i.e., zero-field lines enter and exit the superconductor – 

this can be seen for example in Fig. 5, 𝜔̃ = 0.25, where at the beginning of the field cycle 

(blue and orange curves) the external field is small and the profile changes sign inside the 

superconductor. As the external field reaches its peak value (green and purple curves), the 

entire field profile is positive and the zero-field line is absent.  Looking at the boundary 

conditions in Eq. 16, it is clear that for a given field the regime is determined by 𝛽𝐼. For a 

sinusoidal magnetic field 𝐻(𝑡) =  𝐻𝑚𝑎𝑥𝑠𝑖𝑛(𝜔𝑡)  ⇒ ℎ(𝑡̃) = 𝑠𝑖𝑛(𝜔̃𝑡̃), the first regime exists 

for 𝛽𝐼 > 1 and the second regime exists for 𝛽𝐼 < 1. Hence, the physical meaning of 𝐼, 

beyond reduction of variables, is to demarcate between the two regimes. 𝐼 =
1

𝛽
 is the 

boundary between “low currents” i.e., zero-field lines enter and exit the superconductor, and 

“high currents” where the zero-field line is always in the sample. In addition, the physical 

meaning of 𝜔̃ is to demarcate between what can be called the “quasistatic limit” 𝜔̃ ≪ 1, 

where 
𝜕𝐵

𝜕𝑡
 ≪ 1 and the magnetic field profiles are mostly straight and the affect of the zero-

field line is small. Conversely at 𝜔̃ ≃ 1 the magnetic field profiles are not linear and the 

effect of the zero-field line is much more substantial. It is important to note that from the 

definitions of the dimensionless variables 𝐼 and 𝜔̃ that they are dependent not only on the 
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respective current 𝐼 and frequency 𝜔, but also on the external magnetic field amplitude 𝐻𝑚𝑎𝑥, 

the tape geometry (tape width 𝑑) and the material properties of the superconductor (𝜂 is the 

Bardeen-Stephen drag coefficient which is material dependent[39]). Hence, the values of 

variables 𝐼 and 𝜔̃ for different 𝐼 and 𝜔 will be different for different types of 

superconductors, different types of tape geometries and even for different field amplitudes.  

The behavior of the flux dynamics in the different regimes as well as how and why they 

affect the voltage waveform and losses in the superconductor will be explained below. 

For low frequencies, in the limit 
𝜕𝐵

𝜕𝑡
 ≪ 1 and  𝜔̃ ≪ 1, which we called the quasistatic regime, 

Eq. 15 with the boundary conditions of Eq. 16 can be solved analytically. This was solved by 

Fuzailov and Burlachkov [31] with the solution being: 

𝑏(𝜉) =  √ℎ2 − 2𝐼ℎ𝜉 + 
𝐼2

4
           (17) 

If  𝑏 = 0 i.e., there is no zero-field line in the superconductor, this condition only exists if 

𝛽𝐼 < |ℎ(𝑡̃)|. Otherwise, when a zero-field line exists within the sample and its location is 

denoted as 𝜉0, the solution is: 

𝑏(𝜉) = √(2ℎ2 +
𝐼2

2
) ∙ |𝜉 − 𝜉0|     (18) 

Unlike the DC regime in the previous section or the quasistatic regime above, for moderate 

and high frequencies where 
𝜕𝐵

𝜕𝑡
 ≃ 1 there is no analytical solution for the flux diffusion 

equation. Instead, a numerical solution was calculated by Fuzailov[41]. The calculated 

magnetic field profiles in the superconducting slab for different values of 𝜔̃ are presented in 

Fig. 5 and Fig. 6.  
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Fig. 5. The magnetic field profiles inside the superconducting slab for different values of 𝜔̃ for      

𝛽𝐼 < 1. Each colored line represents the magnetic field profile for a different phase of the external 

magnetic field, starting from ℎ = 0 (external field equals zero) to ℎ = 1 (external field at maximum). 
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Fig. 6. The magnetic field profiles inside the superconducting slab for different values of 𝜔̃ for     

𝛽𝐼 > 1. Each colored line represents the magnetic field profile for a different phase of the external 

magnetic field, starting from ℎ = 0 (external field equals zero) to ℎ = 1 (external field at maximum). 

 

Fig. 5 shows the magnetic field profiles for different 𝜔̃ for 𝛽𝐼 < 1, whereas Fig. 6 shows the 

profiles for 𝛽𝐼 > 1. The different colored lines represent different stages of the external field 

as it rises from zero to its maximum value. It is immediately clear that the greater the 

frequency, the greater the effect of the zero-field lines on the flux dynamics and the less linear 

the profiles become. In Fig. 5 we can see that at low frequencies, let’s take for example, 𝜔̃ =

0.05, the magnetic field profiles are mostly straight. Only at 𝜔̃𝜏 = 0 (blue curve), as a zero-

field line enters the superconductor, the profile becomes slightly curved – particularly near 

the left boundary of the superconductor where the zero-field line is located. At the location of 

the zero-field line we see a square root behavior 𝑏(𝜉)  ∝  √|𝜉 − 𝜉0| as calculated by 

Fuzailov[41] and shown above. As the external field grows, the zero-field line leaves the 

superconductor and the profiles straighten out.  

As the frequency grows, the profiles become less and less linear. Let’s take, for example, 𝜔̃ =

0.6 in Fig. 5.  At the location of the zero-field lines, the slope of the magnetic field, which is 
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also the current, diverges, 𝑗(𝜉) =  
𝜕𝑏

𝜕𝜉
 ∝  

1

√|𝜉−𝜉0|
.  As discussed before, this leads to a decrease 

of the current throughout the rest of the superconductor. This in turn leads to a slowdown in 

the magnetic relaxation processes throughout the superconductor, as shown in [29]. This can 

be seen in Fig. 5, 𝜔̃ = 0.6, purple curve, as a steep slope in the magnetic field profiles at the 

zero-field lines in the center of the superconductor which becomes shallower as we move 

towards the edges – away from the zero-field lines. 

In Fig. 6 we can see that for low frequencies the field profiles coincide with Eq. 18. In this 

quasistatic regime, as the external field rises, the zero-field line approaches the boundary 

where the field is decreasing by absolute value. Looking at Fig. 6  𝜔̃ = 0.1, for 𝜔̃𝜏 = 0 (blue 

curve) the field at the right boundary is far from zero and the zero-field line is closer to the 

left boundary. As the external field rises, the field at the right boundary approaches zero and 

the zero-field line moves towards the right. When the external field reaches its maximum 

(𝜔̃𝜏 =
𝜋

2
, purple curve) the zero-field line is almost at the right boundary. 

 As the frequency grows, the internal magnetic field profile, and by extension the zero-field 

line, can no longer keep up with the changing external field and when the external field is at 

its maximum (𝜔̃𝜏 =
𝜋

2
) the zero-field line is located close to the center of the superconductor 

This can be seen, for example, in Fig. 6, 𝜔̃ = 1, for 𝜔̃𝜏 = 0 (blue curve) the zero-field line is 

further to the left in comparison to the case of 𝜔̃ = 0.1 and for 𝜔̃𝜏 =
𝜋

2
 (purple curve), the 

zero-field line is near the center of the superconductor.  

To understand how the aforementioned behavior of the flux dynamics affects the losses, we 

must observe what it does to the voltage across the superconductor. The voltage is measured 

along the direction of the transport current flow and its equation is derived from Kirchoff’s 

law, the voltage per unit length is: 

𝑉(𝑥) = 𝜀(𝑥) − 𝑗(𝑥) ⋅ 𝜌(𝑥)    (19) 

Where 𝜀(𝑥) is the induced electric field, 𝑗(𝑥) is the current density and 𝜌(𝑥) is the effective 

resistivity. Using Maxwell’s equations, integration, and the boundary conditions as done in 

[31] and [41], we get the following equation for the voltage at the superconductor boundary, 

but since the voltage is constant across the superconductor width[40], this is the voltage over 

a given length of the superconductor: 
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𝑉 =
Φ0

8𝜋𝑐𝜂
(|𝐵|

𝜕𝐵

𝜕𝑥
)
𝑑
2

+ (|𝐵|
𝜕𝐵

𝜕𝑥
)
−
𝑑
2

     (20) 

The dimensionless voltage is [31], [40], [41]: 

𝑉̃ =
8𝑐𝑡0
𝐻𝑚𝑎𝑥𝑑

𝑉 =  (|𝑏|
𝜕𝑏

𝜕𝜉
)
1
2

+ (|𝑏|
𝜕𝑏

𝜕𝜉
)
−
1
2

     (21) 

Using the numerically calculated magnetic fields shown above, the dimensionless voltage 

waveform can be plotted for different frequencies. This is shown in Fig. 7. 

 

 

Fig. 7. Dimensionless voltage 𝑉̃, along with the external magnetic field ℎ and the magnetic field 𝑏 at 

the superconducting slab edges. For 𝛽𝐼 < 1 and different values of 𝜔̃. (a) 𝜔̃ = 0.05 (b) 𝜔̃ = 0.25 (c) 

𝜔̃ = 0.35 (d) 𝜔̃ = 0.4 (e) 𝜔̃ = 0.6. 

 

For low frequencies, like in Fig. 7 (a), the voltage waveform (blue) mostly mirrors the 

external magnetic field (gray). This is to be expected because for low frequencies the 
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magnetic field profiles are almost straight (see Fig. 5, 𝜔̃ = 0.1) i.e., 
𝜕𝑏

𝜕𝜉
 ≈ 𝑐𝑜𝑛𝑠𝑡. This means 

the voltage behaves like |𝑏|. Despite this, we can already see a small “kink” in the voltage 

waveform due to the non-linearity of the magnetic field profile when the zero-field line enters 

the superconductor. As the frequency grows, the magnetic field profile becomes highly non-

linear (see, for example, Fig. 5, 𝜔̃ = 1). Now 
𝜕𝑏

𝜕𝜉
 ≠ 𝑐𝑜𝑛𝑠𝑡 and the kink in the voltage 

waveform becomes a peak that is out-of-phase with the external magnetic field, now there are 

two peaks in the voltage waveform, one in-phase with the external magnetic field and one 

out-of-phase with it (see Fig. 7 (b) (c) and (d)). Henceforth we shall refer to them as the “in-

phase-peak” and the “out-of-phase-peak”, respectively.  And as the magnetic field inside the 

superconductor moves further out of phase with the external magnetic field, the out-of-phase 

peak in the voltage waveform grows and eventually overwhelms the original “in-phase peak” 

(see Fig. 7 (e)). To further understand the appearance of the out-of-phase peak and its location 

we must observe that, as can be seen in Eq. 21 and in [14], the voltage depends on the amount 

of fluxons that enter and exit through the superconductor’s boundaries at 𝜉 = ±
1

2
. As a zero-

field line enters the superconductor and is located at one of its boundaries, it greatly slows 

down the flux dynamics and effectively blocks the entry of fluxons from that boundary[29], 

[31]. This means that as the zero-field line enters from one of the boundaries, we get either 

𝑏
𝜉=

1

2

= 0 or 𝑏
𝜉=−

1

2

= 0. This means one of the terms on the right side of equation 21 is 

suppressed. It is important to note that while the magnetic field is zero, the magnetic field 

gradient diverges at the zero-field line so that the term does not get canceled out entirely, only 

greatly suppressed. In the quasistatic regime, where, as we mentioned before, the magnetic 

field profile is linear and both terms in the voltage follow the external field, the suppression 

of one of the terms in Eq. 21 has little effect on the shape of the voltage waveform (see Fig. 7 

(a)). But for higher frequencies, where the flux dynamics are non-linear and the two terms not 

only don’t follow the external field but can have different signs such that both terms are large 

by absolute value but their opposite signs limit the size of the overall voltage. In such cases 

suppression of one of the terms leads to a sharp increase in voltage and the appearance of the 

out-of-phase peak (see Fig. 7 (b) (c) and (d)). Furthermore, as the frequency grows, the field 

within the superconductor becomes more and more desynchronized from the external field, to 

a point where while the external field reaches its maximal value, the internal field is still 

negative (see Fig. 5, 𝜔̃ = 1, purple line). Thus, the in-phase voltage peak diminishes and 

eventually disappears (see Fig. 7 (e)). 
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As was shown in Fig. 6, for 𝛽𝐼 > 1 the zero-field line is always inside the superconductor 

and never reaches its boundaries. This means that the zero-field line never completely 

suppresses the fluxon motion at any of the boundaries. The closer it gets to any of the 

boundaries, the greater the suppression which will give rise to an out-of-phase peak. Because 

of the less pronounced suppression of the fluxons at the boundaries for high currents (𝛽𝐼 >

1), the out-of-phase peak is expected to appear at higher frequencies compared to lower 

currents 𝛽𝐼 < 1. 

We define the heights of the in-phase and out-of-phase peaks to be Sin and Sout, respectively, 

as can be seen in Fig. 7. Fig. 8 shows a phase diagram of 𝜔̃ and 𝐼, where any combination of  

𝜔̃ and 𝐼 below the red line will result in an in-phase peak only, any combination of  𝜔̃ and 𝐼 

above the blue line will result in an out-of-phase peak only, and any combination of  𝜔̃ and 𝐼 

confined between the red and blue lines will result in a double peak. The distance from the 

blue and red lines indicates which peak is more dominant, with the black line representing 

where Sin = Sout. 

 

Fig. 8. Phase diagram of the appearance of in-phase and out-of-phase peaks for different values of 𝜔̃ 

and 𝐼. The diagram consists of three phases: only in-phase peak (below the red line), only out-of-

phase peak (above the blue line) and double peak (between the red and blue lines). 
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3. Experiment 

3.1. Experimental setup 

In this work, we are focusing on the induced voltage in type II superconductors exposed to 

either constant or alternating magnetic fields while carrying a DC transport current. We are 

using commercial tapes of Bi-Sr-Ca-Cu-O (BSCCO 2223) superconductors manufactured by 

American Superconductors. BSCCO is a type-II high temperature superconductor which is 

made up of many superconducting filaments within a silver matrix. As illustrated in Fig. 9, 

The tapes are placed between two racetrack coils through which flows either a DC or AC 

current, thus creating a DC or AC magnetic field, respectively. The tapes are soldered at the 

edges to two large cables which are connected to a DC current source. The voltage on the 

tape is measured through two voltage taps on the tape, which are spaced 2 cm apart. The 

whole setup is submerged in liquid nitrogen to keep it at 77K, below the critical temperature. 

The DC transport current was driven by an Agilent 6681, 8V, 580A power supply. For DC 

field measurements the field was generated by driving a DC current through the coils using a 

Lipman 30V, 12A power supply, and the voltage across the taps was measured using a 

Keithley 182 sensitive voltmeter. For AC field measurements, the field was generated by 

driving an AC current using a HP 8904A waveform synthesizer which feeds a Berlinger audio 

amplifier. The voltage waveform induced on the superconducting tapes was measured using a 

Picoscope oscilloscope. 

Due to the presence of an AC magnetic field all wires in the vicinity of the system, namely 

the voltage taps, will have voltage induced on them. If left untreated, this induced voltage can 

obscure the voltage on the superconductor. To minimize said pickup and allow for good 

observation and study of the voltage and losses in the superconductor itself, proper 

orientation of the voltage taps is required. The most obvious solution is to arrange the taps 

parallel to the field, so as to prevent the existence of a current loop, and have the two taps be 

a twisted pair for as much of their length as possible, so as to prevent the existence of a 

pickup loop. While this is good in theory, in practice it was difficult to execute. At some point 

the taps must diverge from the twisted pair to connect to the superconducting tape with some 

distance between the taps. At this point, the voltage taps must be arranged so that they run 

perfectly straight along the tape center until they meet into a twisted pair. Any deviation from 

the straight line, whether during the manufacturing process or while submerged in the 
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nitrogen, would create a loop which would induce voltage on the taps. Due to the very small 

margin of error, this technique proved unfeasible. We used a different technique, first 

introduced by Rabbers et. al.[42]. After the voltage taps diverge, instead of keeping them 

straight we arranged them in a figure eight formation. In this setup, we intentionally create 

two loops in our voltage taps where each loop has an opposite induced voltage on it. Now, by 

making both loops identical in size, the induced voltages cancel each other out and we are left 

only with the voltage on the superconductor. To ensure the loops are identical in size we 

manufactured a plate with channels that hold the voltage taps in the right formation from the 

point where they are welded until the point they converge. This method has proven to be far 

easier to implement and more robust when submerged in nitrogen and has allowed has to 

almost completely remove the induced pickup voltage. A schematic drawing of the figure 

eight setup is presented in Fig. 10. To further reduce the pickup, we used a coaxial shielded 

twisted pair rather than just a twisted pair. 

 

Fig 9. Experimental system setup. 

 

Fig. 10. Schematic drawing of the figure eight setup used in our experiment (from Rabbers et. 

al.[42]). 
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4. Results 

4.1. E-I curves in the DC regime 

We conducted volt-ampere measurements of the BSCCO tape in the presence of different 

external DC magnetic fields and obtained E-I curves for the tape (V is converted to E via the 

relation 𝑉 = 𝐸𝑙, where 𝑙 is the distance between the voltage taps). As we approach the critical 

current 𝐼𝑐, the field begins to grow and assumes the power law forms shown in Eq. 11 and 14. 

To better observe the exponent in the 𝐸(𝐼) power law relation, and to more easily compare 

between the exponents of different curves, the curves are drawn in a log-log scale. Thus, we 

get a linear dependence between the field 𝐸 and the current 𝐼, where the gradient of the linear 

curve of the log-log plot is equivalent to the exponent in the regular 𝐸(𝐼) power law relation. 

Our equations for the 𝐸(𝐼) relation turn from the power law form:  

𝐸(𝐼) ∼ 𝐼𝑢+1,            𝐻 > 𝛽𝐼        (22) 

𝐸(𝐼) ∼ 𝐼𝑢+2,            𝐻 < 𝛽𝐼        (23) 

To the linear form: 

log (𝐸(𝐼)) ∼ (𝑢 + 1)log (𝐼),            𝐻 > 𝛽𝐼        (24) 

log (𝐸(𝐼)) ∼ (𝑢 + 2)log (𝐼),            𝐻 < 𝛽𝐼        (25) 

In this form, it is much simpler to see the different gradients of the different curves, and these 

different gradients clearly correspond to the different exponents in the 𝐸(𝐼)  power law 

relation. 

Our model predicts that the presence of a zero-field line will change the exponent in the 𝐸(𝐼) 

relation. We expect the gradients of the curves in the log-log plot to be greater when a zero-

field line is present in the superconductor, as opposed to when it is absent. The measured 

𝐸(𝐼) curves in the log-log scale are shown in Fig. 11: 
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Fig. 11. 𝐸(𝐼) curves of BSCCO HTS tape in the log-log scale for various external DC magnetic fields. 

Dashed lines are linear fits in the log-log scale 

 

As shown in the theory chapter, the presence of the zero-field line within the superconductor 

is determined by both the self-field 𝛽𝐼 and the external field 𝐻. As we measure the 𝐸 − 𝐼 

relation, the external magnetic field 𝐻 remains constant. On the other hand, the transport 

current 𝐼, and by extension the self-field, is gradually increased. Thus, there are multiple 

different behaviors of the logarithmic E-I curves. For no external field, or if the magnetic 

fields are smaller than the self-field (𝐻 < 𝛽𝐼 ) throughout the entire 𝐸 − 𝐼 measurement, the 

zero-field line is always present and the gradient is steep, this behavior can be seen in the 

three rightmost curves in Fig. 11, where the exponent’s value is approximately 16. If the 

magnetic fields are higher than the self-field (𝐻 > 𝛽𝐼) throughout the entire 𝐸 − 𝐼 

measurement, the zero-field line is always absent. Thus, we expect to see a smaller exponent. 

This behavior can be seen in the three leftmost curves in Fig. 11, where the gradient is 

approximately 8. These measurements qualitatively agree with the theory which suggests that 

the presence of a zero-field line changes the 𝐸(𝐼) relation within the superconducting tape. 

As was mentioned before, for the infinite slab geometry 𝛽 = 
2𝜋

𝑐𝑤
.  For a slab width 𝑤 =

0.4𝑐𝑚 this gives us 𝛽 ≈ 20
𝐺𝑎𝑢𝑠𝑠

𝑎𝑚𝑝𝑒𝑟𝑒
. However, taking into account that the actual tape is flat 
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with a thickness to width ratio of  
ℎ

𝑤
≈ 13, the prediction for 𝛽 should be smaller. The value 

of 𝛽 for the finite tape geometry was found by Zeldov et. al.[43] to be 𝛽 =
2⋅√2

𝑐⋅√ℎ⋅𝑤
 and for our 

tape’s dimensions this gives 𝛽 = 2.58 𝐺𝑎𝑢𝑠𝑠. 

The results are in qualitative agreement with the theory, in that the slopes of the E-I curves in 

the log-log plot are greater in the presence of a zero-field line within the tape. However, 

quantitively, the theory and experiment are somewhat apart. The slopes of the curves where 

the zero-field line is present are approximately 8 whereas for the curves where the zero-field 

line is absent the slope is approximately 16. The zero-field line changes the slopes by 

approximately 8. This is significantly greater than the theoretical prediction, which expects a 

difference of 1 between the slopes. There are several possible factors that may contribute to 

this discrepancy. Firstly, the theoretical model considers an infinite slab geometry, while in 

reality the geometry is that of a finite tape. Secondly, the theoretical assumption of 𝑢 ≫ 1, 

which the theoretical model assumed in order to obtain Eq. 11 and 14 may be exaggerated. 

The theory observes that Eq. 11 and 14 give good approximations of 𝐸(𝐼) for values as low 

as 𝑢 > 4. But for the experimental conditions, with operating temperatures of 77K and 

currents that approach and even exceed 𝐼𝑐, the measured BSCCO HTS tape may be deep in 

the flux flow regime and therefore it could very well be that that 𝑢 < 4 in the experiment. 

The model will need to be refined and adjusted to account for the much smaller pinning 

energies. 

Both of these factors affect the value of 𝛽. While we have already adjusted the predicted 

value of 𝛽 to account for the tape geometry and decreased it by roughly an order of 

magnitude from ~20 to ~2.5, this adjustment may still be insufficient. This is due to the fact 

that we did not take into account how the geometry affects the homogeneity and direction of 

the magnetic self-field at the edge of the superconductor. The infinite slab geometry assumed 

by the theory dictates that the self-field created by the transport current at the slab edges is 

constant throughout, as well as always being parallel to the slab. For a finite tape geometry, 

the self-field will eventually curve around the ends of the tape. This means that the self-field 

at the edge of the tape is not uniform. It is also not parallel to the edge of the tape for the 

entirety of the tape height. For a tape as thin as ours, it might not even be parallel to the tape 

edge at the half height of the tape. Considering the differences between the theoretical 

assumptions and the experimental conditions, and to determine how much these affect the 

value of 𝛽, we conducted numerical simulations of the magnetic self-field around a finite, 
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current carrying, superconducting tape with the dimensions of the experimental tape using 

COMSOL Multiphysics. The results are presented in Fig. 12: 

 

 

Fig. 12. Numerical simulation of the magnetic self-field of a current carrying, finite HTS tape. Left: 

Around the entire tape cross section. Right: Along the edge of the tape. 

 

The numerical simulations in Fig. 12 clearly show that for a finite tape geometry the 

magnetic self-field at the tape edge is not uniform and this will clearly affect the predicted 

value of 𝛽. The field lines cut through the edge of the tape such that even at half of the tape 

height they are slightly curved. By taking the calculated magnetic field near the tape edge at 

half the tape height and dividing by the transport current, we get 𝛽 ≈ 1.6. This is smaller than 

the theoretical prediction by almost 1. Considering that 𝛽 is found both in the magnetic field 

profile equations (Eq. 6 and 12) and by extension in the electric field equations (Eq. 10 and 

13), the smaller value of  𝛽 will affect the exponent in the 𝐸(𝐼) power law relation. For 𝛽 of 

around 2, we expect that for transport currents of around 150A we will see the zero-field line 

enter the tape for an external magnetic field of approximately 300 Gauss  

(the zero-field line enters the tape when 𝐻 = 𝛽𝐼). Looking again at Fig. 11, we can see that 

for an external field of 300 Gauss (red center curve in Fig. 11), we get a curve with an 

intermediate exponent of ~10. This is the transition point between the high exponents due to 

the presence of the zero-field line and the low exponents where there is no zero-field line.  

The external field for this field transitional line is in agreement with the value of 𝛽 which was 

calculated in the numerical simulations. 
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The dependence of the exponent 𝑛 on various factors has been studied in the past. It has been 

shown that 𝑛 is affected by various factors such as the temperature of the superconductor, its 

homogeneity and its structure, in particular the filament diameter in multifilamentary 

superconductors, the presence of impurities and even the method of manufacture of the 

superconductor[44]. Studies have also shown that for larger external magnetic field 

amplitudes the exponent 𝑛 grows smaller. The explanation given for the decrease of 𝑛 with 

the growing magnetic field is that 𝑛 is dependent on the critical current 𝑗𝑐, which itself 

decreases as the external field grows[45], [46]. In these experiments, the value on 𝑛 was 

measured in the same way as was done in this work - by measuring the 𝐸 − 𝐽 curves of the 

superconductor under different external fields, moving to the log-log scale, and comparing 

the slopes of the curves. We present here a new interpretation for the change of 𝑛 due to the 

change in the external field, where the entry of a zero-field line and the subsequent change in 

flux dynamics lead to a change in 𝑛. It is important to emphasize that to observe the effects of 

the zero-field line one needs to be able to compare between 𝐸 − 𝐽  curves where zero-field 

lines are always present and ones where they are always absent. This means choosing 

magnetic field amplitudes and driving transport currents which ensure cases where 𝐻 > 𝛽𝐼 or 

𝐻 < 𝛽𝐼 inside the superconductor all the time. Previous studies on changing 𝑛 were done in 

higher fields (several Teslas as opposed to several hundred Gauss in this work [45], [46]) and 

lower temperatures (4.2K-30K as opposed to 77K in this work [45], [46]), it is possible that 

in these conditions the interplay between the external field and the self-field are such that the 

zero-field line was either present or absent in all the measurements and throughout the 

entirety of the measurements. In such cases, the changes in values of  𝑛 would not be due to 

the zero-field lines and since the zero-field line either never enters or never leaves the 

superconductor, the value of 𝑛 cannot be associated to its affect. Moreover, for the lower 

temperatures measured in previous works, the pinning would be very strong and the flux 

dynamics are in the flux creep and not the flux flow regime. The flux diffusion equation no 

longer describes the flux dynamics and the effect of zero-field lines would not conform to the 

theory. The zero-field line is probably just one factor that affects the value of 𝑛, along with 

those mentioned above.  

To summarize this chapter, in the DC regime, the zero-field changes the flux dynamics. This 

results in a change in the exponent of the 𝐸(𝐼) relation of the superconductor. It is thus 

important to consider whether a zero-field line is present inside a superconductor when 

designing superconducting applications. 
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4.2. Voltage waveform measurements in the AC regime 

4.2.1. Broken symmetry 

We begin this chapter, which describes the results for the AC regime, with unexpected and 

surprising results. As was mentioned in the introduction (see Fig. 1 and its corresponding 

text), that for a combination of an external AC magnetic field and DC transport current, one 

normally expects to see a double frequency, symmetric response in the AC voltage signal. 

That is, we expect two peaks in the voltage for each cycle of the external magnetic field, and 

both peaks should be of equal height. The reason that the frequency of the voltage is double 

that of the magnetic field has to do with the dependence of the electric field (and by 

extension, the voltage) on both the direction of the magnetic field and the direction of the 

motion of the fluxons. We know that 𝐸⃗ = 𝐵⃗ × 𝑣 , where for the case of a magnetic field 

perpendicular to the tape and flux motion only along the width of the tape this can be 

simplified to 𝐸 = 𝐵 ⋅ 𝑣. Hence, the voltage induced in the superconductor depends on the net 

motion of fluxons from one side of the superconductor to the other (fluxons which enter and 

leave from the same side of the superconductor do not contribute to the field, the voltage they 

contribute going in is canceled by the opposite voltage they contribute going out). If we take, 

for example, a sinusoidal external magnetic field, during the positive half of the field cycle 

fluxons of positive polarity (positive 𝐵) move across the superconductor in one direction (we 

shall choose this direction to be the positive direction – hence positive 𝑣). For the negative 

part of the field cycle, fluxons of negative polarity (negative 𝐵) move across the 

superconductor in the opposite direction (negative 𝑣). For both parts of the field cycle 𝐵 and 

𝑣 have the same sign, thus the induced voltage throughout the entire field cycle is always 

positive and we shall observe two voltage peaks per field cycle. Both voltage peaks in the 

field cycle are symmetrical and of identical height and shape. This is because the positive and 

negative parts of the external field are symmetrical, hence the number and velocity of fluxons 

of positive polarity is identical to the number and velocity of fluxons of negative polarity. The 

only difference is the direction of motion which ensures the voltage is always the same sign. 

This double frequency of the induced voltage was observed and explained by Adrianov[10], 

Ogasawara[11]–[13], Brandt and Mikitik[14], and Oomen[15]. The models presented in these 

works assumes strong pinning of the vortices. In such scenario, the gradient 
𝜕𝐵

𝜕𝑥
 within the 

sample is quite constant hence 𝐸 reaches its maximum value when 𝐵 is maximal hence, the 

peaks in the waveforms of 𝐸 are in-phase with the magnetic field. This was also observed 



32 
 

experimentally by Lukovsky[30], whose voltage waveform measurement is presented in Fig. 

13 below. The figure clearly demonstrates the double frequency effect. For each frequency of 

the applied field presented in the figure, we see peak marked as “in-phase peak” which 

appears twice during a field cycle. However, Lukovsky has demonstrated a second peak (per 

half-cycle) which emerges as a small bump in the major peak and increases with increasing 

frequency to become dominant. This peak was named “out-of-phase peak” in these 

experiments and it was suggested there, without theoretical support, that the annihilation of 

vortices and anti-vortices may play a role here. 

 

 

Fig. 13. Voltage waveforms on a HTS tape carrying a DC transport current and exposed to an external 

AC field (from Lukovsky et. al.[30]). The double frequency of the voltage relative to the field is 

clearly visible. 

 

Notice that in Lukovsky’s measurements we can see the coexistence of the out-of-phase and 

the in-phase peaks in each half cycle of the field (black arrows in Fig. 13). It is important to 

emphasize that the double peak which results from the zero-field line is not the double 

frequency of the voltage waveform in comparison to the field. The transition between in-

Out-of-phase 
peak 2 

In-phase peak 
2 

Out-of-phase 
peak 1 

In-phase peak 
1 
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phase and out-of-phase peaks happens for every half cycle such that when the two peaks 

coexist, we see four peaks per external field cycle. 

Surprisingly, when we measured the AC voltage waveforms, the picture was very different. 

The voltage peaks where asymmetrical, having different heights and different shapes. In 

some cases, the voltage waveform had the same frequency as the external magnetic field. One 

of these waveforms we measured, where both peaks are out of phase with the external field 

and asymmetrical to one another is presented below in Fig. 14: 

 

Fig. 14. Voltage waveform on a HTS tape carrying a DC transport current and exposed to an external 

AC field. The asymmetry between the peaks in every half cycle is clearly visible. 

 

The asymmetry in Fig. 14 is quite evident, for each cycle of the external magnetic field 

(dashed line in Fig. 14) we have two peaks which are out-of-phase with the field. The right 

peak in each field cycle is considerably larger than the left peak – about twice as large. 

This asymmetry remained after ensuring that no experimental factors, such as voltage pickup 

in the measurement setup or DC components in the external magnetic field, where at play. 

Initially, this behavior does not make sense as it implies that the tape behaves differently for 

the case where the perpendicular magnetic field is pointing up and for the case where it is 

pointing down. The only possible explanation is that the tape itself is asymmetrical, and that 

the motion of fluxons in one direction is different than the motion of fluxons in the opposite 

direction despite identical external factors. Such an asymmetry can be due to uneven 

Asymmetric out-
of-phase peaks 
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distribution of the superconducting filaments in the BSCCO tape – which could be the result 

of improper manufacture of the tape or degradation of some of the superconducting filaments 

over time. Or, it can be the result of different surface barriers on each side of the tape. 

Interestingly, asymmetry in the behavior of BSCCO tapes has been observed in the past by 

Chesneau et. al.[47]. They measured the magnetic field profiles within BSCCO tapes 

carrying different transport currents and exposed to an external magnetic field. In their results 

they found that the field profiles measured for the same current but in different directions was 

asymmetrical (Fig. 15). This is also unexpected, just as the behavior of the superconducting 

tape should not change just because the external magnetic field is in the opposite direction, 

neither should it behave differently because the current is reversed. Chesneau et. al. attributed 

this asymmetry to relaxation effects, namely different times between the application of the 

current and the measurement of the field. Because the current in one direction was applied 

longer than the current in the opposite direction, this means that the flux that penetrated the 

tape when the current was in the positive direction did not have enough time to fully exit 

when the current was reversed. While this might be the reason for the asymmetry they 

observed, asymmetry of the tape itself could also cause this behavior. In any case, uneven 

application times of the current or field in one direction cannot explain the asymmetry we 

observe. The applied external field is sinusoidal and completely symmetric in terms of time. 

 

Fig. 15. Magnetic field profiles inside a BSCCO tape for different current directions, the profiles are 

different for the same current in opposite directions (from Chesneau et. al.[47]). 

 

To verify whether the tape is indeed asymmetric, we measured the I-V curve of the tape under 

different external DC magnetic fields perpendicular to the flat side of the tape. For each 
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magnetic field we measured the I-V curve twice, once for the field pointed up, and once for 

the field pointed down. If the superconductor is symmetric, the curves for each magnetic field 

amplitude should overlap. The results are presented in Fig. 16 below: 

Fig. 16. I-V curves of the HTS tape exposed to DC magnetic fields of different amplitudes and 

directions. 

 

In Fig. 16, it is clearly visible that the tape is asymmetric. The curves for magnetic fields of 

identical magnitudes but different polarities are offset from each other, with one curve rising 

in voltage earlier than the other. This disparity between curves was observed in multiple I-V 

measurements conducted for each field. It is also interesting to notice that for greater 

magnetic field amplitudes the difference between the curves of different field directions is 

greater (compare curves of 180 Gauss to curves of 120 Gauss). 

To better understand how this asymmetry should affect the voltage waveform results, we 

worked in collaboration with Nikita Fuzailov and Leonid Burlachkov from the Physics 

department at Bar Ilan University. They have adjusted the theoretical model to account for an 

asymmetrical superconductor. They did this by artificially applying different barriers on each 

of the tape boundaries and defined an adjustable variable that determines what is the height of 

the barrier on the left boundary as a fraction of the barrier on the right boundary. Based on 

this adjusted model, they run numerical simulations of the magnetic field profiles and voltage 

waveforms expected for different dimensionless currents and frequencies and for different 
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asymmetries. The numerical simulations, along with experimental waveforms, are presented 

below: 

 

Fig. 17.  Numerical simulation of voltage waveforms on a current carrying HTS tape exposed to 

external fields of different frequencies. The surface barrier on the right boundary is 80% of the height 

of the surface barrier on the left boundary. 

 

Fig. 18.  Experimental voltage waveforms on a current carrying HTS tape exposed to external fields 

of different frequencies. 

 

Before describing the predictions and results for asymmetric tapes, let us start with a 

description of what would be seen for a symmetric tape. Looking again at Lukovsky’s results 

Out-of-phase peak 

Out-of-phase peak 

In-phase peak 
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in Fig. 13, we can see that at low frequencies the voltage starts with two peaks percycle (Fig. 

13, bottom curve), both peaks are in-phase with the magnetic field – hence we start in the in-

phase regime. We can see that the two peaks in each external field cycle are of identical 

height and shape, as is expected for a symmetric tape. As the frequency grows, the double 

peak regime is reached and an out-of-phase peak grows in every half cycle of the field. We 

now have four peaks per half cycle of the external field – two in-phase ones and two out-of-

phase ones. The out-of-phase peaks which grow with the frequency are identical to each other 

in shape and height, thus symmetry of the waveform always remains. For high enough 

frequencies, the out-of-phase peaks become dominant (Fig. 13, upper curves), and eventually 

the in-phase peaks will disappear. The out-of-phase regime will be reached and again we will 

have two peaks per external field cycle. 

Now, we can describe how the asymmetry changes the voltage waveform in the tape. In their 

modified model, Fuzailov and Burlachkov assumed that the source of the asymmetry was 

unequal barriers on the tape boundaries. Let us recall that the voltage on the tape is created by 

the net crossing of fluxons across the tape boundaries. The voltage is thus dictated by the 

magnetic field and its gradient at the tape boundaries (see Eq. 20). For low frequencies, 

where the magnetic field profiles are close to linear, the contribution of each boundary to the 

voltage is the same whether the magnetic field is positive or negative. If the surface barriers 

on the tape are unequal, then this will change the voltage contribution of each boundary 

somewhat, but because the contribution is the same regardless of the field’s sign, it will be the 

same change in both halves of the magnetic field cycle. Hence, the effects of the asymmetry 

on the voltage waveform at low frequencies, and in particular on the in-phase peak which is a 

product of the linear field profiles, are predicted to be small. On the other hand, as the 

frequency grows, the magnetic field profiles become very non-linear. Not only does each 

boundary contribute differently to the voltage, the contributions can be of opposite signs. And 

so, when one boundary contributes positively and the other negatively, they balance each 

other out. That is until a zero-field line enters the tape through one of the boundaries. We 

have shown that when this happens, the zero-field greatly inhibits the flux motion at the 

boundary and suppresses its contribution to the voltage. If the zero-field line enters through 

the boundary that contributes negatively to the voltage, it suppresses it – leaving the positive 

unchecked and creating the out-of-phase peak. When the external magnetic field changes sign 

every half field cycle, the voltage contributions of the boundaries also change sign. If one 

boundary contributes positively when the external field is positive, it will contribute 
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negatively when it is negative and vice versa for the other boundary. If the tape is symmetric, 

for one half cycle a zero-field line will enter from the left boundary, suppressing that 

boundary, leaving the only the positive contribution of the right boundary and creating the 

out-of-phase peak. The shape of the field profile when the zero-field line enters from the left 

is presented below: 

 

 

 

Fig. 19. Magnetic field profile inside the tape when the zero-field line is at the left boundary of the 

tape.  

 

On the other half of the field cycle a zero-field line will enter from the right boundary and 

suppress it. But, because the gradients of the magnetic field profile at the boundaries changed 

signs, the signs of the voltage contributions also flip. This will again leave only the positive 

voltage contribution and lead to the creation of the out-of-phase peak. The shape of the field 

profile when the zero-field line enters from the right is presented below: 
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Fig. 20. Magnetic field profile inside the tape when the zero-field line is at the right boundary of the 

tape. 

 

Thus, the voltage waveform of each half cycle will be identical to the other. If the tape is 

asymmetric, the picture changes. Now, each boundary contributes differently, the one with 

the larger surface barrier has less flux crossing it in comparison to the other. This means that 

on the field half cycle where the boundary with the weaker barrier contributes positively, its 

contribution is larger and thus when the zero-field line enters, we will get a large peak. On the 

next field half cycle, the boundary with the stronger barrier contributes positively, now when 

the zero-field line enters from the other side, the resulting out-of-phase peak will be smaller 

than the previous one. Hence, for higher frequencies, we expect that the asymmetry of the 

tape will strongly affect the voltage waveform. It will cause the out-of-phase peak in one half 

cycle of the field to be larger than that in the other. The higher the frequency, the less linear 

the field profiles, and the greater the difference between the out-of-phase peaks is expected to 

be. With these predictions in hand, we can now look at the results and see if they agree with 

our theory. 
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In Fig. 17 above, we presented a simulation of an asymmetric tape carrying a constant current 

and exposed to different field frequencies. Before addressing the voltage waveforms, we shall 

look at the waveforms of the external magnetic field. In Fig. 17 there are three dashed lines, 

they are all identical waveforms, but are offset from one another in the 𝑦 axis by some 

constant. The middle of the three (black dashed line) is the external field to which the tape is 

exposed. The blue and red dashed lines are the magnetic fields at the left and right tape edges, 

respectively. The reason for the offset at the tape edges is the self-field created by the 

transport current in the tape. The self-field will contribute a constant and positive magnetic 

field at one edge of the tape and an identical but negative magnetic field at the other edge. 

Because of this, the fields at the tape edges are offset from the applied field, the size of the 

offset depends on the transport current in the tape. It is important then to note that the zero-

field line does not enter the tape when the black dashed line is zero, but rather when the blue 

or red dashed lines are zero. Moving to the voltage waveforms, for low frequencies, the 

voltage waveform is almost completely symmetrical, with one peak only slightly higher than 

the other. Fig. 17, starts in the double peak regime and so we initially see four peaks per 

cycle. As the frequency grows, one of the out-of-phase peaks is suppressed, and grows less 

than the other out-of-phase peak, creating a height disparity between the two (compare the 

height difference between the out-of-phase peaks at 𝜔̃ = 0.12 with the height difference at 

𝜔̃ = 4). We can see that the higher the frequency, the greater the height disparity that is 

expected between the peaks i.e., the stronger the suppression. Moreover, looking at the in-

phase peaks, we can see that they shrink with rising frequency, as expected. But they remain 

almost identical in height throughout. This implies that the suppression of the out-of-phase 

peak is more powerful than that of the corresponding in-phase peak. We can see that at a 

certain frequency, the larger of the two out-of-phase peaks is large enough as to completely 

overwhelm it corresponding in-phase peak. But at the same time, the other out-of-phase peak 

is so suppressed that its in-phase peak is still visible. Thus, for certain conditions of current 

and field, it is predicted that one of the in-phase peaks will be gone and the other will still be 

visible such that there are three peaks per field cycle. Fig. 18 presents an example from our 

experimental series of measurements, where the current is constant and the frequency is 

increased. The disparity between the two out-of-phase peaks is clear, and so is the existence 

of three peaks per field cycle predicted by the simulation (see Fig. 18, three arrows). To test if 

the suppression of the out-of-phase peak increases with the field frequency, we analyzed the 

voltage waveforms measured for identical transport currents and field amplitudes, but 
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different frequencies. We measured the height of the two peaks in the same external field 

cycle and plotted the height of the peaks as a function of the frequency. We also calculated 

the ratios between the small and large peaks in the voltage waveform and plotted the ratios as 

a function of the frequency. The resulting graphs are presented below: 

 

Fig. 21. Height of the two voltage peaks in Fig. 18 in one field cycle for different frequencies. 

 

Fig. 22. Ratio between the height of the small and large peaks presented in fig. 18 for different 

frequencies. 
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In Fig. 21 we can see the height of each of the voltage peak for different frequencies. Initially, 

at low frequencies, both peaks grow in size. Looking at Fig 22, where the ratio between the 

heights is presented as a function of the frequency, the ratio between the peaks decreases, 

meaning that the larger of the two peaks grows faster than its smaller counterpart. At a 

frequency of about 213Hz, the growth of the smaller peak stalls and by 257Hz it virtually 

stops, the larger peak continues to grow at an unchanged rate. This is exemplified when 

looking again at Fig. 22, at around 257Hz the ratio between the peaks drops faster than it did 

for the lower frequencies. This is as predicted by the numerical simulations. 

In Figs. 17-22, we studied the effect of frequency on the asymmetry. But the origin of the 

voltage is the combination of both the external field and the transport current and its shape is 

determined by both the frequency of the field and the magnitude of the current. As such, it is 

pertinent to study how the current effects the asymmetry of the waveform. To do this, we 

measured the voltage waveform for a constant external magnetic field and changing currents. 

The experimental waveforms are presented below: 

 

Fig. 23.  Experimental voltage waveforms on an HTS tape exposed to an external magnetic field with 

an amplitude of 764 Gauss and frequency 131Hz and carrying different transport currents. 

 

Like the analysis for changing frequencies, we measured the height of two out-of-phase peaks 

in the same external field cycle in Fig. 23 and plotted the height of the peaks as a function of 

the current. We also calculated the ratios between the small and large out-of-phase peaks in 

the voltage waveform and plotted the ratios as a function of the frequency. At present, we are 

working on numerical simulations to compare with these results. But we can already study 
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the experimental results with the theory itself to see if they are in agreement. The results are 

presented below: 

 

Fig. 24. Height of the two voltage peaks in Fig. 23 in one field cycle for different transport currents. 

 

Fig. 25. Ratio between the height of the small and large peaks presented in Fig. 23 for different 

currents. 

 

Figs. 24 and 25 clearly show that the height difference between the two out-of-phase peaks, 

and thus the asymmetry of the voltage, shrinks with growing transport current. In Fig. 24 we 

see that both peaks grow with the current, but the initially smaller peak grows faster. The 

difference between them shrinks. This can be seen even better in Fig. 25, the ratio between 
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the small peak and the large peak grows with the current. Interestingly, the asymmetry does 

not shrink at a constant rate. At first it shrinks rapidly, with the ratio growing quickly, but at 

about 90A the growth of the ratio slows down quite drastically. These results are in agreement 

with the theory. This is due to the fact that the suppression depends on the non-linearity of the 

magnetic field profiles and the corresponding out-of-phase regime. For higher currents, the 

out-of-phase regime is less dominant and appears at higher frequencies. The magnetic field 

profiles are linear at higher frequencies and for very large currents the zero-field line is 

trapped in the center of the tape (see Fig. 6). When this happens, they cannot effectively stop 

the motion of flux on the tape boundaries and we should not see any asymmetry. 

To summarize, we have shown that the measured HTS tape has an asymmetric structure. This 

asymmetry drastically changes the voltage waveform, suppressing one peak of the voltage 

waveform in every half cycle of the external field. The theoretical model was adjusted to 

account for the asymmetry of the tape. Comparing the predicted waveforms obtained by 

numerical simulations to our experimental waveforms, there is good qualitative agreement 

between the two. Further analysis of our results shows that the asymmetry of the tape 

primarily affects the out-of-phase peak in the voltage waveform and has very little effect on 

the in-phase peak. Also, we showed that the suppression effect of the asymmetry is stronger 

for higher field frequencies and lower transport currents. These results are in agreement with 

the theoretical predictions. 

4.2.2. Traveling in the predicted phase diagram 

As mentioned in the theory section, we expect the presence of magnetic zero-field lines and 

their entry and exit from the superconductor to drastically affect the voltage waveform 

induced in the superconductor. Specifically, we expect that for different values of DC 

transport current, AC magnetic field amplitude and AC magnetic field frequency, the wave 

form will exhibit either an in-phase peak, an out-of-phase peak, or both peaks simultaneously. 

The conditions for which each one of these regimes will exist has been predicted in [31] in 

the form of a phase diagram which has been presented in Fig. 8 above. While the appearance 

of an out-of-phase peak and its coexistence and replacement of the in-phase peak has been 

experimentally observed by Lukovsky et. al. [30], [48], the validity of the theoretical 

predictions and the conditions for which each peak dominates have yet to be experimentally 

verified. In this work we measured the voltage waveform on BSCCO tapes under different 

DC transport currents and AC external field amplitudes and frequencies so as to validate the 

theoretical model. For the readers convenience, we display Fig. 8 again. 
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Fig. 8. Phase diagram of the appearance of in-phase and out-of-phase peaks for different values of 𝜔̃ 

and 𝐼. The diagram consists of three phases: only in-phase peak (below the red line), only out-of-

phase peak (above the blue line) and double peak (between the red and blue lines). 

 

Following the theoretical phase diagram suggested in Fig. 8, we started with two types of 

measurements. First, we kept the DC transport current constant and gradually increased the 

external AC magnetic field’s frequency while keeping a constant field amplitude. Looking at 

the phase diagram in Fig. 8, this means starting at some value 𝐼 and increasing 𝜔̃ so that we 

move “up” the phase diagram from the region of only the in-phase peak to the region of the 

double peak and finally to the region of only the out-of-phase peak. Second, we kept the 

external magnetic field constant and gradually increased the DC transport current. Looking 

again at Fig. 8, this means starting at a constant value of 𝜔̃ and increasing 𝐼 so as to move 

from “left” to “right” across the phase diagram. Starting either from the region of the double 

peak and moving into the region of the in-phase peak alone, for the smaller values of 𝜔̃ ≲

0.6. Or starting from the region of the out-of-phase peak alone, moving to the region of the 

double peak and ending in the region of the in-phase peak alone, for the larger values of 𝜔̃ ≳

0.6. Both types of measurements (constant 𝐼 and constant 𝜔̃) have been conducted for 

different fixed values of current and frequency so as to observe the transitions in different 

parts of the phase diagram. The goal of these measurements was to observe the transition 
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between the different regimes and compare these results to the phase diagram and confirm its 

predictions. 

Before presenting our results, we should revisit the relations between 𝐼 and 𝜔 and their 

dimensionless counterparts 𝐼 and 𝜔̃. We have already shown the relations, but these relations 

must be adjusted to account for the differences between the theory and the experiment. The 

theory considers an infinite slab, while the experiment is conducted on a finite tape. The 

necessary correction to the relation was done by Fuzailov[41]. Where it is shown that 𝐼 can be 

written as: 

𝐼 = 2 ⋅
𝐵𝑒𝑑𝑔𝑒

𝐻𝑚𝑎𝑥
⋅
ℎ

𝑤
           (26) 

Where 𝐵𝑒𝑑𝑔𝑒 is the magnetic self-field at the edge of an infinite wire with a rectangular cross 

section (a finite tape). Fuzailov derived the relation between 𝐵𝑒𝑑𝑔𝑒 and 𝐼 and found it to be: 

𝐵𝑒𝑑𝑔𝑒 = (ℎ ⋅ ln (1 + 4 ⋅ (
𝑤

ℎ
)
2

) + 4 ⋅ 𝑤 ⋅ 𝑡𝑎𝑛−1 (
ℎ

2 ⋅ 𝑤
)) ⋅

𝑗

𝑐

= (ℎ ⋅ ln (1 + 4 ⋅ (
𝑤

ℎ
)
2

) + 4 ⋅ 𝑤 ⋅ 𝑡𝑎𝑛−1 (
ℎ

2 ⋅ 𝑤
)) ⋅

𝐼

𝑐 ⋅ 𝑤 ⋅ ℎ
            (27) 

Where 𝑤 is the tape width and ℎ is the tape height, while 𝑗 is the current density. 

For our measured tape 𝑤 = 0.4𝑐𝑚 and ℎ = 0.03𝑐𝑚. Substituting these into Eq. 27, and then 

substituting Eq. 27 into Eq. 26 gives us: 

𝐼 ≈
3.213

𝐻𝑚𝑎𝑥
⋅ 𝐼        (28) 

In the theory section we presented the relation between 𝜔 and 𝜔̃: 

𝜔̃ =
𝜋

2
⋅

𝜂𝑑2

Φ0𝐻𝑚𝑎𝑥
⋅ 𝜔         (29) 

Where 𝜂 ≈ 5 ⋅ 10−7
𝑔

𝑐𝑚⋅𝑠𝑒𝑐
 is the Bardeen-Stephen drag coefficient, Φ0 = 2.07 ⋅ 10−7𝐺𝑎𝑢𝑠𝑠 ⋅

𝑐𝑚2 is the unit flux, and 𝑑 = 0.4𝑐𝑚 is the tape width. Substituting these variables into Eq. 30 

gives us: 

𝜔̃ ≈
0.61

𝐻𝑚𝑎𝑥
⋅ 𝜔        (30) 
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With the relations in Eq. 29 and 31 in hand, we have three variables to control, 𝐼, 𝜔, and 

𝐻𝑚𝑎𝑥. By choosing a constant value for the external field amplitude 𝐻𝑚𝑎𝑥, we can then 

measure the transition between the different regimes of the phase diagram in Fig. 8. The 

results are presented below, starting with the transition from the left to the right of the phase 

diagram (along the 𝐼 axis), the external magnetic field amplitude is set at 764 Gauss. In each 

of the following figures, we display such scans of current (left to right on the phase diagram) 

for a different value of 𝜔̃. 

 

 

Fig. 26. Voltage waveforms for an external AC magnetic field with a frequency of 56Hz and an 

external field amplitude of 764 Gauss, carrying different transport currents. The dashed line is the 

normalized magnetic field waveform and it is for comparison of the phase. The arrow denotes the 

shoulder caused by the in-phase peak. 

 

We start with a frequency of 56Hz. At low transport currents, such as the lower green curve 

of 40A, we can see that the voltage peaks are out-of-phase with the external field. We are 

clearly in the out-of-phase regime, above the blue line in Fig. 8. We can see that as we 

increase the transport current, the larger out-of-phase peaks develop a shoulder (denoted by 

the black arrow in Fig. 26), it can already be seen for transport currents of 70A (purple 

curve). This shoulder becomes more and more pronounced as the transport current grows and 

at the highest measured current of 130A (upper blue curve), it is already an independent peak. 

As it grows, we can see that this peak moves in-phase with the external field. We identify this 

“semi-hidden” peak as the in-phase peak. As can be seen in Fig. 26 and in the figures that 
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follow, this in-phase peak is not actually in phase with the external field. Looking at the 

numerical simulations of Fuzailov and Burlachkov, we can see that there is a phase shift of 

the in-phase peak (see Fig. 17). This shift is dependent on the transport current, external 

magnetic field, and tape asymmetry. The theory predicts that for higher frequencies the phase 

shift will be greater due to the greater viscous drag on the fluxons. While for higher currents 

the phase shift will be smaller due to the linearity of the field profiles. The in-phase peak in 

our measurements qualitatively agrees with the theory, moving towards the peak of the 

external field with growing current and away from it with growing frequency. But, without a 

quantitative characterization of the asymmetry of the tape so as to factor its effect on the 

phase shift, we cannot make quantitative conclusions about the phase shift of the in-phase 

peak. 

Recalling our findings regarding the asymmetry and its effects on the voltage waveform, this 

in-phase peak corresponds to the smaller of the out-of-phase peaks. We can see that it is of 

comparable height to the suppressed out-of-phase peak for all the currents in which it 

appears, but we must remember that the asymmetry suppresses the out-of-phase peak more 

than it does the in-phase one, and that the suppression is lesser with growing current. It thus 

follows that for the lower currents, if the tape was symmetric, the out-of-phase peak would be 

taller than the in-phase one. As the current grows, we expect the in-phase peak to grow while 

the out-of-phase peak is less suppressed. Thus, for the higher currents, if the tape was 

symmetric, the difference between the peaks would shrink. Hence, what we see is the in-

phase peak growing with the rising current and approaching the out-of-phase peak. Now, 

repeating the transition for a higher frequency of 131Hz we get: 
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Fig. 27. Voltage waveforms for an external AC magnetic field with a frequency of 131Hz and an 

external field amplitude of 764 Gauss, carrying different transport currents. 

 

Like in Fig. 26, at low currents we start in the out-of-phase regime. However, as the transport 

current is increased, the in-phase peaks in Fig. 27 appear later when compared to Fig. 26 (at 

80A, light blue curve). Like in Fig. 26, the in-phase peak and its corresponding out-of-phase 

are almost equal in height for all the currents, for the lower currents the in-phase peak is even 

slightly higher. But if we again consider the asymmetry, the higher frequency means greater 

suppression, especially of the out-of-phase peak. This means that for the symmetric case the 

out-of-phase peak would be higher and the difference between it and the in-phase peak would 

be greater in Fig. 27 than for the lower frequencies seen in Fig. 26. Further increasing the 

frequency gives us: 
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Fig. 28. Voltage waveforms for an external AC magnetic field with a frequency of 213Hz and an 

external field amplitude of 764 Gauss, carrying different transport currents. 

 

Fig. 29. Voltage waveforms for an external AC magnetic field with a frequency of 357Hz and an 

external field amplitude of 764 Gauss, carrying different transport currents. 

 

As can be seen in Figs. 28 and 29, as we increase the frequency, the in-phase peak begins to 

appear at higher currents. For 213Hz a shoulder appears only at around 110A, and at 357Hz it 

doesn’t appear at all. The heights of the in-phase and out-of-phase peaks in Fig. 28 are of 

similar height, like in Figs. 26 and 27. But recalling that the suppression of the peaks due to 

asymmetry is greater for greater frequencies, this actually corresponds to a greater height 
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disparity between the in and out-of-phase peaks in the case of symmetry when compared to 

Figs. 26 and 27. 

In practice, we were unable to complete the entire transition between the three different 

regimes of the phase diagram. This is due to the frequency limits of our experimental setup. 

We intend to extend the capabilities of the setup and add measurements at the very low 

frequency range, even lower than 1 Hz. Despite this, the transition between the out-of-phase 

and double peak regimes was observed. Thus, we can investigate this transition qualitatively, 

and indeed, we see that Figs. 26-29 are in agreement with the phase diagram. We always start 

in the out-of-phase regime i.e., above the blue line in Fig. 8. Looking at Fig. 8, we can see 

that the blue curve separating between the out-of-phase and double peak regimes starts with a 

low slope for 𝐼 < 1 and above that begins to curve upwards with 𝐼. As the transport current is 

increased, we move right along the 𝐼 axis in Fig. 8 and eventually we shall cross the blue line. 

At that point, we have entered the double peak regime, and the in-phase peak begins to 

appear and grows as we move further into the double peak regime with increasing current. 

This is what we see in the experiments. We start with only out-of-phase peaks at lower 

currents and at higher currents we cross into the double peak regime and an in-phase peak 

begins to appear. Moreover, as we saw, the higher the frequency, the higher the currents at 

which the in-phase peak begins to appear. This is also in agreement with the phase diagram. 

As the blue line in Fig. 8 curves upward it also curves further to the right. This means that the 

higher up we are in the phase diagram i.e., the higher the frequency, the further we need to 

move to the right to cross into the double peak regime. Hence the in-phase peak will appear at 

higher currents, as observed. The fact that we observed the transition from the out-of-phase to 

the double peak regime indicates that the transport currents driven in the tape are in the 

region where the transition line rises with 𝐼, meaning they should correspond with values of 

𝐼 > 1. Calculating 𝐼 based on Eq. 28 for an external field amplitude of 764 Gauss, the 

dimensionless current for the highest driven current (130A) is 𝐼 ≈ 0.55, which is lower than 

expected. This quantitative discrepancy will be addressed later in this work. 

Next, we shall follow experimentally the transition from the bottom to the top of the phase 

diagram (along the 𝜔̃ axis) for different values of  𝐼, the results are presented below: 
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Fig. 30. Voltage waveforms for 130A transport current and external field amplitude of 764 Gauss and 

different frequencies. 

 

Fig. 31. Lower two waveforms in Fig. 30. 𝐼 = 130A, 𝐻𝑚𝑎𝑥 = 764 Gauss. 

 

Let us recall that due to the asymmetry of the BSCCO tape, there will be an asymmetry 

between the peaks in the voltage waveform in every cycle of the external field. Starting with 

the highest measured transport current, 130A. We can see in Fig. 30 that for lower 

frequencies there are three peaks in every cycle of the external field, where the two lower 
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peaks being the suppressed out-of-phase and corresponding in-phase peak while the larger 

peak is the non-suppressed out-of-phase peak, which has already suppressed its in-phase peak 

(red and green lower curves in Fig. 30 and the same curves closer up in Fig. 31). Hence, we 

begin in the double peak regime. At the lowest frequency of 23 Hz, the in-phase peak is most 

pronounced and higher than the out-of-phase one (bottom red curve in Figs. 30 and 31). As 

the frequency increases, it first shrinks to become equal in size to the out-of-phase peak 

(green curve in Figs. 30 and 31), and then appears as though it remains the same in height 

compared to its out-of-phase peak. Again, we must take into account that the suppression of 

the out-of-phase peak grows with growing frequency, so for the case of symmetry the in-

phase peak would actually be shrinking compared to the out-of-phase peak. The in-phase 

peak diminishes and becomes a shoulder in the enlarged out-of-phase peak (see Fig. 30, 

131Hz-257Hz) and at the highest frequencies (see Fig. 30, 317Hz and 357Hz) it disappears 

altogether. Repeating the transition for a lower transport current of 120A, we get: 

 

Fig. 32. Voltage waveforms for 120A transport current and external field amplitude of 764 Gauss and 

different frequencies. 
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Fig. 33. Lower two waveforms in Fig. 32. 𝐼 = 120A, 𝐻𝑚𝑎𝑥 = 764 Gauss. 

 

Similarly to the previous transition, at low frequencies we start with three peaks. A 

suppressed out-of-phase peak, its corresponding in-phase peak, and a non-suppressed out-of-

phase peak which has overwhelmed its in-phase peak. At the lowest frequency of 23Hz 

(bottom red curve in Figs. 32 and 33) the in-phase peak is most pronounced and slightly 

higher than the out-of-phase peak. As the frequency increases it shrinks and becomes equal to 

the out-of-phase peak and eventually disappears. As we explained before, the reason that it 

remains of comparable height to the out-of-phase peak is the asymmetry. The asymmetry 

suppresses the out-of-phase peak more than it does the in-phase one, thus for the symmetric 

case the in-phase peak would be shrinking in relation to the out-of-phase peak. At first 

glance, the results in Figs. 32 and 33 are very similar to those in Figs. 30 and 31, and it would 

be tempting to say that the decrease in transport current did not affect the results. But, the 

suppression of the out-of-phase peak due to asymmetry is predicted to be more powerful at 

lower currents. So, for the case of symmetry, we would actually see the out-of-phase peak 

overtake the in-phase one at a lower frequency compared to the case of 130A transport 

current. This is a predicted by the theory. 

Further lowering the transport current to 85A gives us the following results: 
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Fig. 34. Voltage waveforms for 85A transport current and external field amplitude of 764 Gauss and 

different frequencies. 

 

Fig. 35. Lower two waveforms in Fig. 34. 𝐼 = 85A, 𝐻𝑚𝑎𝑥 = 764 Gauss. 

 

Figs. 34 and 35 give us a seemingly contradictory image. On one hand, the in-phase peak 

disappears at a lower frequency compared to measurements in higher currents (at 213 Hz in 
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Fig. 34 as opposed to 317 Hz in Figs. 30 and 32). This is very much in agreement with the 

theory, which predicts that at lower currents the transition to the out-of-phase regime will 

happen at lower frequencies. On the other hand, while the in-phase and out-of-phase peaks 

start at the same height at 23 Hz (red curve, Figs. 34 and 35), the in-phase peak actually 

grows taller than the out-of-phase one for higher frequencies, and remains so until it 

disappears. This supposed contradiction to the theory can be explained by the asymmetry of 

the tape. For the lower current, the suppression of the out-of-phase peak becomes stronger. It 

is possible that at this transport current the suppression of the out-of-phase peak is stronger 

relative to the weakening of the in-phase peak to the extent that the out-of-phase peak 

actually becomes smaller than the out-of-phase one. If this is the case, for the symmetric case 

we would expect the out-of-phase peak to dominate. 

As for the transitions at constant frequencies and changing transport currents, we were unable 

to transition between all three regimes in the theoretical phase diagram in Fig. 8. We did 

again succeed in transitioning between the out-of-phase regime and the double peak regime, 

and we can investigate this transition to see if it supports the theoretical phase diagram. For 

this experiment the transition is from the double peak to the out-of-phase regime, the opposite 

of what happened when the frequency was constant and the current was changed. This is 

expected from the phase diagram, for a given transport current, as we increase the frequency 

we move “up” the phase diagram along the 𝜔̃ axis. This means we should start in the in-

phase regime, move to the double peak regime and from their continue to the out-of-phase 

regime. For the lower accessible frequencies in our experimental setup, we evidently start our 

measurement in the double peak regime. After accounting for the effects of the asymmetry, 

the size of the in-phase peak indicates that we start at the top half of the double peak regime, 

above the black line where the peaks are of equal height and close to the blue line that 

demarcates between the double peak and the out-of-phase regime (see Fig. 8). And so, we 

expect that as we increase the frequency, we move closer to the blue line which leads to the 

shrinking of the in-phase peak until finally, we cross into the out-of-phase regime and the in-

phase peak disappears altogether. This is exactly what happens in our measurements. 

Moreover, we have observed that as the transport current is decreased i.e., we move to the left 

of the phase diagram, the transition from the double peak regime to the out-of-phase regime – 

signified by the disappearance of the in-phase peak – happens at lower frequencies. Looking 

at the theoretical phase diagram, we can see that for lower values of 𝐼, the transition line is 

near horizontal (see blue line in Fig. 8,  𝐼 < 1). This means that the point of transition should 
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exhibit low or no dependence on the transport current. But at high values of 𝐼 (𝐼 > 1), the 

transition line curves up and begins to grow with 𝐼. Our experiments clearly show that the 

point of transition from the double peak regime to the out-of-phase regime is proportional to 

the transport current. This means that the transport currents used in this experiment should 

correspond to values of  𝐼 > 1, exactly the conclusion we reached previously when 

measuring the voltage for changing currents. 

In addition to the transport current 𝐼 and the external field frequency 𝜔, the dimensionless 

variables both depend on the external magnetic field amplitude 𝐻𝑚𝑎𝑥. By comparing the 

voltage waveforms for fixed values of 𝐼 and 𝜔̃ and different values of 𝐻𝑚𝑎𝑥, we can study the 

effects of the external field amplitude on the voltage waveforms in the superconductor and 

compare them to the theoretical predictions. The results are presented below. The previous 

measurements indicated that for our measurements the transition between the out-of-phase 

and double peak regime happens at our lowest measured frequencies and our highest 

measured currents, we shall thus begin our analysis of the effect of 𝐻𝑚𝑎𝑥 at low frequencies 

and high currents: 

 

Fig. 36. Voltage waveforms for 130A transport current an external field frequency of 56Hz and 

different amplitudes. 

 

Starting with Fig. 36, where the transport current was fixed at 130A and the external field 

frequency was 56Hz, we can see how the voltage waveform changes with rising field 

amplitude. For the lowest applied amplitude of 424 Gauss (bottom red curve), the voltage 

waveform is in the out-of-phase peak regime, with two asymmetric out-of-phase peaks for 
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every external field cycle. Increasing the field amplitude to 509 Gauss (yellow curve) leads to 

an increase of the voltage, but the waveform is still clearly out-of-phase with the external 

field. Only at 636 Gauss do we see the appearance of an additional peak in the voltage 

waveform for every half cycle of the external field. These peaks trend toward being in-phase 

with the external field and signify that we have just entered the double peak regime. Further 

increase in the external field to 764 gauss leads to an increase in this in-phase peak, such that 

it is comparable in size to the out-of-phase peak. Remembering that low frequencies and high 

currents are predicted to result in weak suppression from asymmetry, the closeness in height 

between the peaks indicates that we are close to the black line in Fig. 8. Looking at Eq. 29 

and 31, we can see that both 𝐼 and 𝜔̃ are inversely proportional to 𝐻𝑚𝑎𝑥. This means that, for 

fixed value of transport current and frequency, both 𝐼 and 𝜔̃ should decrease for increasing 

field amplitudes. While a decrease in 𝜔̃ should facilitate the appearance of the in-phase peak, 

a decrease in 𝐼 should do the opposite, push us further into the out-of-phase regime. Thus, it 

is expected that increasing the external field amplitude should both push us towards the 

appearance of the in-phase peak and at the same time push us deeper into the out-of-phase 

regime. Moreover, as increasing the external field amplitude decreases the dimensionless 

frequency, it should weaken the asymmetry. Yet, at the same time it decreases the 

dimensionless current, thus strengthening the asymmetry. We should thus expect that 

changing the external field amplitude should not strongly affect the asymmetry of the voltage 

waveform. But as we have observed that the in-phase peak appears with growing field 

amplitude, it appears that the inverse relation between 𝜔̃ and 𝐻𝑚𝑎𝑥 is stronger than the one 

between 𝐼 and 𝐻𝑚𝑎𝑥. Hence, we should also expect that the asymmetry will decrease with the 

growing field amplitude. The stronger relation between 𝜔̃ and 𝐻𝑚𝑎𝑥 could indicate that the 

drag coefficient 𝜂 in Eq. 30 is positively dependent on external field amplitude, an 

assumption that needs to be further investigated in future experiments. 
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Fig. 37. Voltage waveforms for 130A transport current an external field frequency of 131Hz and 

different amplitudes. 

 

In Fig. 37 we have increased the frequency from 56Hz to 131Hz and maintained a transport 

current of 130A. In terms of our location on the phase diagram, each voltage waveform 

remains at the same point along the  𝐼, axis in relation to the voltage waveform of the same 

amplitude in Fig. 36, but is higher up on the 𝜔̃ axis. As in Fig. 36, for the lowest field 

amplitude we start in the out-of-phase regime (Fig. 37, 424 Gauss, bottom red curve), and as 

the amplitude is increased, we move toward the double peak regime, as can be seen by the 

appearance of a small peak in the voltage waveform for 509 Gauss (Fig. 37, yellow curve) 

which continues to grow with increasing field amplitude. At higher frequencies we expect to 

start deeper within the out-of-phase regime, meaning that the appearance of the in-phase peak 

will happen at higher field amplitudes and the peak will be less prominent than that in Fig. 37 

for the same field amplitude. We can see that for the higher fields in Fig. 37 (purple and green 

curves), the in-phase peak is about the same height as its out-of-phase counterpart whereas in 

Fig. 36 it is slightly smaller than out-of-phase peak. Again, we must take into account that 

when comparing between individual curves of the same field amplitude in Figs. 36 and 37, 

the difference in frequency means that the out-of-phase peaks in Fig. 36 are less suppressed 

than those in Fig. 37. So that for a symmetric tape the out-of-phase peak in Fig. 37 would be 

more dominant in the waveform as compared to the out-of-phase peak in Fig. 36. 

Continuing to increase the frequency, we obtain the following results: 
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Fig. 38. Voltage waveforms for 130A transport current and an external field frequency of 257Hz and 

different amplitudes. 

 

Fig. 39. Voltage waveforms for 130A transport current and an external field frequency of 357Hz and 

different amplitudes. 

 

 



61 
 

Figs. 38 and 39 show the voltage waveforms on the superconductor carrying a transport 

current of 130A and exposed to external fields of varying amplitudes and frequencies of 

257Hz and 357Hz, respectively. We can compare Fig. 38 to Fig. 36 and 37 and notice that the 

in-phase peak is nonexistent for the smaller amplitudes of 424 and 509 Gauss (two bottom 

curves in Fig. 38), and only appears for high field amplitudes (two upper curves in Fig. 38). 

And while its height in relation to its out-of-phase peak is comparable to those of the 

corresponding in-phase peaks for lower frequencies, the increased suppression of the out-of-

phase due to the higher frequency means that it would in fact be smaller than its out-of-phase 

peak, more so than in Figs. 36 and 37. This is in agreement with the theoretical prediction as 

mentioned above, the higher the frequency the deeper into the out-of-phase regime we begin. 

This is further exemplified by the results of Fig. 39, for a field frequency of 357Hz the in-

phase peak is absent for all measured field amplitudes. We start so far in the out-of-phase 

regime that the decrease in 𝜔̃ brought by the increase in 𝐻𝑚𝑎𝑥 is not enough to cross the blue 

line in the phase diagram and reach the double peak regime. 

To further verify our conclusions on the effect of the external field amplitude on the voltage 

waveforms, we have also checked what happens to the waveforms when instead of changing 

the frequency, we change the currents. To be able to see as many transitions as possible, we 

shall return to the lower frequency 56Hz, and start with a lower current of 100A, working our 

way back up 130A.  Looking at the theoretical phase diagram in Fig. 8, we predict that for the 

lower currents we will begin deeper in the out-of-phase regime and the in-phase peak will be 

absent in the lower field amplitudes and only begin to manifest for the high field amplitudes. 

The reason we expect the appearance of an in-phase peak at all, despite the fact that the 

growing field amplitude decreases 𝐼, is that as observed above in experiments of changing 

field amplitude, the inverse relation between 𝜔̃ and 𝐻𝑚𝑎𝑥 appears stronger than the one 

between 𝐼 and 𝐻𝑚𝑎𝑥. This means that it should be possible for 𝜔̃ to decrease enough to move 

the waveform into the double peak regime despite the decreasing 𝐼.  As the transport current 

increases, we expect that we shall begin closer to the transition between the regimes and that 

we shall observe the beginning of the in-phase peak for lower field amplitudes and that it will 

be more prominent.  
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Fig. 40. Voltage waveforms for 100A transport current and an external field frequency of 56Hz and 

different amplitudes. 

 

Having returned to lower frequencies (56Hz) we can see that for the lower field amplitudes of 

424 and 509 Gauss – the two lower curves in Fig. 40 – we are in the out-of-phase regime with 

only the out-of-phase peaks present. For the higher field amplitudes of 636 and 764 Gauss – 

the two upper curves in Fig. 40 – we can see the beginning of the double peak regime with 

the appearance of a new peak. This agrees with our prediction and previous observations that 

the relation between 𝜔̃ and 𝐻𝑚𝑎𝑥 is stronger than the relation between 𝐼 and 𝐻𝑚𝑎𝑥. At the 

same time, comparing the results in Fig. 40 to those of Fig. 36 – which is also exposed to 

fields of 56Hz but while carrying a higher transport current of 130A. We can see that for the 

two upper curves representing field amplitudes of 636 and 764 Gauss, the in-phase 

component for the lower current (Fig. 40) starts smaller than the out-of-phase peak for 636 

Gauss (Fig. 40, purple curve) and then overtakes it at 764 Gauss (Fig. 40, green curve). For 

the higher current (Fig. 36), the in-phase peak starts smaller than the out-of-phase peak and 

then closes the gap but is still just slightly smaller (Fig. 36, purple and green curves). But 

taking into account that the suppression due to asymmetry grows with decreasing field, in a 

symmetric tape the out-of-phase peak in Fig. 40 would be much larger in comparison to the 

in-phase one. Thus, we are again in agreement with our theoretical expectations.  

To summarize this chapter, we have experimentally investigated how three different 

variables, the DC transport current, the external AC magnetic field amplitude, and the 
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external AC field frequency, affect the induced voltage waveform on a BSCCO-2223 HTS 

tape. We studied how changing each of these variables contributed or hindered the 

appearance of an in-phase peak in the voltage waveform. We did this by fixing two of the 

three variables and changing the third. We thus obtained a series of voltage waveforms that 

differed only in one variable, allowing us to see how the waveform evolved for every 

variable. Each of these series represents motion along the theoretical phase diagram in a 

specific direction. Changing the frequency represents vertical motion along the 𝜔̃ axis of the 

phase diagram, changing current represents horizontal motion along the 𝐼 axis of the phase 

diagram, and changing the magnetic field amplitude represents diagonal-like motion along 

the phase diagram. We repeated each type of measurement, changing frequency, changing 

current, and changing amplitude, for different fixed values. This means we repeated the same 

motion along the different axes of the phase diagram with different starting points. Within the 

limits of the experimental setup, we were successfully able to observe the beginning of the 

transition between two different regimes in the phase diagram – the out-of-phase and the 

double peak regimes. As we have shown, the change in the voltage waveform due to the 

changing of the different external variables is in qualitative agreement with the theoretically 

predicted phase diagram.  
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5. Discussion and Summary 

5.1. Effect of zero-field lines on the 𝑬(𝑰) relation in HTS for the DC 

regime 

For HTS at high operating temperatures (~70K), fluxon motion involves the non-activated, 

flux flow regime. Therefore, a description of flux dynamics in HTS has to include an analysis 

of the flux diffusion equation (Eq. 1). By taking the well-established dependence of the 

activation energy 𝑈 on 𝑗 - 𝑈(𝑗) =  𝑈0ln (
𝑗𝑐

𝑗
), and the boundary conditions of a current 

carrying HTS slab (Eq. 3), the 𝐸(𝐼) relation for the current carrying slab exposed to an 

external field were derived. The 𝐸(𝐼) relation obtained for the case where the zero-field line 

is absent in the HTS is different than the one for the case where the zero-field line is present 

(Eq. 11 and 14). This indicates that the presence of a zero-field line changes the flux 

dynamics in the superconductor, and by extension its 𝐸 − 𝐼 characteristics. For both instances 

the 𝐸(𝐼) relation is a power-law one, but the presence of the zero-field line is predicted to 

increase the exponent in the relation by one. 

To verify this prediction, we measured the 𝐸 − 𝐼 curves of a BSCCO-2223 HTS tape exposed 

to different external DC magnetic fields. The fields were chosen so as to allow for cases 

where the zero-field line is present in the tape, and for cases where it is absent. We then 

compared the exponents of the different curves to see if there was a change between them, 

and if so – is it by one as predicted by the theory. 

Our results showed that the exponents do increase in the presence of a zero-field line, in 

qualitative agreement with the theory. However, quantitatively the results and the theory 

diverge. Where the theory predicts that the exponent will increase by one, the results show a 

larger increase of about 8. We have shown that this discrepancy is a result of both the 

assumption of stronger pinning energies than those that probably occur in the tape as well as 

the difference between the infinite slab geometry of the theory and the finite tape geometry of 

the experiment. The theory needs to be refined to account for these differences so as to give a 

correct prediction of the change to the exponent. Also, we must rule out the possibility that 

the asymmetry described in the previous chapters does not play a role in the DC regime and 

affects the E-I curves. We will therefore extend our measurements to other BSCCO and 

YBCO tapes and wires. Despite the quantitative differences, we have shown that the presence 

of a zero-field line inside a superconductor does change the exponent of its 𝐸(𝐼) relation. 
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5.2. Effect of zero-field lines on the voltage waveforms in the AC regime 

For the AC regime, our main goal was to measure the voltage waveform of a superconducting 

tape in which a zero-field line is present and observe how it affects the induced voltage on the 

tape. For a superconductor carrying a DC transport current and exposed to an external AC 

magnetic field, the voltage depends on the motion of fluxons entering and leaving the 

superconductor. Magnetic zero-field lines have a drastic effect on the flux dynamics inside 

the superconductor. The motion of flux in the superconductor is drastically slowed down in 

their presence. If a zero-field line is on or near one of the boundaries of the superconductor, it 

strongly suppresses entry and exit of fluxons on that boundary. Whether a zero-field line can 

approach and cross the boundary to suppress flux motion there, and how much the 

suppression of flux motion at the boundary affects the voltage waveform depends on the 

combination of three variables: the frequency of the external magnetic field, the amplitude of 

the external magnetic field, and the DC transport current. Fuzailov et. al.[31], [41] simplified 

the problem from three variables into two normalized variables 𝐼 and 𝜔̃ and created a phase 

diagram which predicts for which values of 𝐼 and 𝜔̃ the voltage will be in-phase, out-of-phase 

or have two peaks. And if it has two peaks, which one will be more dominant. 

In this work we measured the voltage waveforms on a BSCCO-2223 HTS tape carrying 

different DC transport currents and exposed to different AC magnetic fields. By controlling 

the three variables, transport current, frequency, and field amplitude, we experimentally 

investigated the effects of the zero-field line within the superconductor on the induced 

voltage and tested the validity of the theoretical model presented by Fuzailov et. al. From our 

results we have learned several things: 

First, we learned that the tape has an asymmetric structure. It behaves differently if the 

direction of the perpendicular external field is flipped, or conversely if the direction of the 

transport current is reversed. In collaboration with Fuzailov and Burlachkov, the theoretical 

model was adjusted to account for this asymmetry and new predicted voltage waveforms 

were made accordingly. Comparison of the numerical voltage waveforms with the 

experimental results confirmed major predictions of the theory. We showed that the 

asymmetry greatly effects the out-of-phase peaks in the voltage waveform, but has almost no 

effect on the in-phase peaks. We showed that this is very much in line with the fact when the 

voltage is in the in-phase regime, the magnetic field profile is close to linear. Hence, it is not 

greatly affected by changes to the amount of flux crossing the boundaries. On the other hand, 

in the out-of-phase regime, where the field profile is very non-linear, changes to the amount 
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of flux at the boundaries have a big impact on the voltage. We showed that the asymmetry 

suppresses one voltage peak in each cycle of the external field, and that the suppression is 

stronger for higher frequencies, leading to reduced peak growth with frequency and 

eventually stopping peak growth altogether. Conversely, the suppression effect caused by the 

asymmetry is weaker for higher currents, the greater the current, the more similar the voltage 

peaks. This again is in line with the theory, because the out-of-phase regime dominates at 

higher frequencies and lower currents while the in-phase one dominates at higher currents 

and lower frequencies. This asymmetry greatly affects the shape of the voltage waveforms 

induced on the tape and can have many implications for the feasibility and practicality of 

HTS tapes in different applications, which require further investigation.  

Second, we were able to qualitatively confirm the existence of the theoretical phase diagram 

predicted by Fuzailov and Burlachkov. Our experiments were able to show that the voltage 

waveform on the HTS tape reacts to changes in the transport current, external field frequency 

and external field amplitude in the manner predicted. By fixing two of the aforementioned 

variables and changing the third, we moved along the phase diagram in different directions 

looking for the transition between the regimes. In our experiments, we successfully observed 

the beginning of the transition between the out-of-phase and double peak regimes and vice 

versa. We saw that for fixed frequencies and amplitudes the in-phase peak appears as the 

current increases whereas for fixed currents and amplitudes the in-phase peak disappears as 

the frequency increases. For higher fixed frequencies the applied transport current needed for 

the in-phase peak to appear was greater. Conversely, for higher fixed currents, the in-phase 

peak persisted at higher frequencies. Both these observations agree with the phase diagram. 

When changing only the current 𝐼 or the frequency 𝜔, we change only one of the 

dimensionless variables in the phase diagram, 𝐼 and 𝜔̃ respectively. When changing the 

magnetic field amplitude 𝐻𝑚𝑎𝑥, both 𝐼 and 𝜔̃ are changed. In our experiments, higher field 

amplitudes led to entry into the double peak regime and the appearance of the in-phase peak. 

Seeing as both 𝐼 and 𝜔̃ should decrease with growing 𝐻𝑚𝑎𝑥, this implies that 𝜔̃ is more 

strongly dependent on 𝐻𝑚𝑎𝑥 than 𝐼. A possible reason for this is that 𝐻𝑚𝑎𝑥 also affects the 

Bardeen-Stephen drag coefficient 𝜂, which also affects 𝜔̃. This will be investigated in future 

experiments. 

This qualitative agreement with the theory, despite the asymmetry of the measured tape and 

the fact that the measured tape is multi-filamentary in structure whereas the theory assumes a 

homogenous structure, indicates that the zero-field line does affect the flux dynamics inside 
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the superconductor. Hence the zero-field line needs to be taken into account when evaluating 

the potential losses in superconductors and their viability in various applications. 

However, quantitatively the theoretical values of the dimensionless variables that correspond 

to the experimental currents and fields applied are not in agreement with the experimental 

results. Our measurements indicate that we are on the border between the out-of-phase and 

double peak regimes in an area of the phase diagram which corresponds to moderate 

dimensionless frequency values of 𝜔̃ ≳ 0.6 and dimensionless current values of 𝐼 > 1. But 

plugging the values of 𝐼, 𝜔 and 𝐻𝑚𝑎𝑥 into Eq. 28 and 30 gives much lower values of 𝜔̃ and 𝐼, 

we get 𝜔̃ < 0.3 and 𝐼 < 0.6 for all combinations of variables. This suggests that we should 

have observed mostly the double peak behavior with the in-phase peak being the dominant of 

the two peaks, and for the lower frequencies and higher currents we could even expect to 

enter the in-phase regime. This is very different from the experimental results. There are 

several factors that could contribute to the fact that while the experiment agrees qualitatively 

with the behavior of the phase diagram and the changes in the waveforms agree with the 

theoretical predictions, the theoretical values of 𝜔̃ and 𝐼 are quantitively far from those 

indicated by the experiment. First, the theory assumes an infinite slab geometry when in 

reality the superconductor has a finite tape geometry. Second, the theory assumes that the 

superconductor is homogenous and superconducting throughout, but BSCCO is made of 

many superconducting filaments embedded in a non-superconducting silver matrix. This 

raises several questions, for instance, how does the moving of the current between filaments 

through the matrix affect the model? Third, the theory assumes that the superconductor is 

symmetric, where our superconductor is clearly asymmetric. Considering the fact that many 

HTS are have a filamentary structure and that there is a possibility that many commercial 

superconducting tapes could be asymmetric, either due to manufacturing issues or decay of 

some of the filaments over time, it is of great interest to adjust the theory to account for these 

factors.   

In light of the quantitative discrepancy and the fact that the properties of HTS tapes can differ 

greatly from those assumed in the theory, there are many more experiments that can be done 

to shed more light on how zero-field lines affect the voltage waveforms and the losses in HTS 

and refine the theory. We plan on repeating the above measurements for more HTS tapes, 

both filamentary ones like BSCCO and homogenous ones like YBCO, and improving our 

experimental setup to allow for greater ranges of magnetic field frequency and field 

amplitude. Comparing between HTS tapes with different internal structures will provide 
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insight as to what part the internal structure plays in losses in HTS tapes exposed to AC 

current and field combinations in general and when zero-field lines exist in the tape in 

particular. We also plan on investigating the different tapes symmetry, through volt ampere 

and magneto-optic measurements, and compare the voltage waveforms and losses of 

symmetrical tapes to those of asymmetrical ones and see how this affects the losses. If there 

is a possibility of superconductors decaying and losing symmetry over time, shedding light 

on the effects of asymmetry in HTS tapes could be crucial in determining their feasibility and 

effective lifetime. In addition, we also plan on repeating these measurements at different 

temperatures. Seeing as temperature affects the appearance of flux flow inside the 

superconductor and changes the viscous drag coefficient 𝜂, changing the temperature should 

increase or decrease the effects of the zero-field line. Hence investigation of different 

temperatures will contribute greatly to determining ideal operating temperatures of HTS in 

different applications. Finally, we plan to conduct magneto-optic measurements not only to 

determine the internal structure and symmetry of the tape, but also to observe the zero-field 

line inside the HTS tapes and directly observe how they change the flux dynamics in the tape.  
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 תקציר

קווים אלו הינם    על.-על דינמיקת השטף בתוך מוליכי קווי אפס מגנטיים מודל תיאורטי חדש הדגיש את התרומה החשובה של

על ידי קווי  ההתבדרות המקומית של צפיפות הזרם  נקודת המפגש של שטף חיובי ושלילי ובהם השטפים מאיינים זה את זה.

העל ומובילה להאטה בדינמיקת השטף כאשר קווי  - מחדש את צפיפות הזרם בכל שטח החתך של מוליך מפלגת, אפס אלו

העל. בעבודה זו, אנו חוקרים באופן ניסיוני איך תרומה זו של קווי האפס המגנטיים משפיעה  -מוליךב האפס המגנטיים נוכחים 

, על ידי חקירה של עקומות  DCאנו מתחילים במצב של  .ותגבוה ותעל בטמפרטור-מוליכי  חוטיםעל המתח הנוצר על גבי 

חיצוניים. בעוד שהזרם יוצר באופן   DCוחשופים לשדות מגנטיים  DCהנושאים זרמי  BSCCO-2223 בחוטיזרם - מתח  

, זאת כתלות בערכי הזרם והשדה  , השדה החיצוני מזיז את מיקום הקו ואף יכול להעלים אותוהחוטטבעי קו אפס במרכז 

אפס  הקו  במעבר בין מצב שבו  ותזרם משתנ- ערכי הזרם והשדה, הראינו באופן ניסיוני שעקומות המתחעל ידי שינוי  יחדיו.

במנגנון    י מנגנונים מתחרים.נ , שם נצפו שAC- . המשכנו וחקרנו את ההשפעות של קו האפס במצב הנפקדנוכח למצב בו הוא 

הוא "בפאזה" עם השדה המגנטי החיצוני. אבל, ככל שתדירות השדה   החוטרגיל, המתח שנוצר עקב תנועת השטף לאורך 

עבור תנאים שונים    "שאינו בפאזה" עם השדה המגנטי החיצוני.במתח  שיא ן לא צפוי קטן, מופיע באופ  בחוטגדלה או שהזרם 

שאינו בפאזה  השיאשל שדה וזרם  תנאים אחריםב לעומת זאת,י המנגנונים מתקיימים זה לצד זה. נ של שדה חיצוני וזרם, ש

כתוצאה של ההאטה בתנועת   נובעבמתח שאינו בפאזה   שהשיאהמודל התיאורתי חוזה  ונותר לבדו.בפאזה ש זהמתגבר על 

במתח   ד מהשיאיםהשטף עקב קווי אפס מגנטיים. הוצגה דיאגרמת פאזות אשר חוזה את התנאים של זרם ושדה בהם כל אח

שהתנהגות המתח תואמת באופן איכותי   תוצאות המדידה הראו. הלצד זה  ז יםמתקיימו   בהם השיאיםתנאים ה ואתשולט,  

תומכות בכך שיש האטה בדינמיקת   AC- והן במצב ה DC-לתחזיות של דיאגרמת הפאזות התיאורתית. התוצאות הן במצב ה

בתגובת החוט לשדה מגנטי ולזרם   אסימטריה תופעה חדשה ומפתיעה של בנוסף, גילינו השטף בנוכחות קווי אפס מגנטיים. 

. אסימטריה זו משפיעה בצורה משמעותית על צורת  שנמדדהעל - במבנה של החוט מוליך   הנובעת ככל הנראה מאסימטריה

העל. על יד התאמת התיאוריה לחוט בעל מבנה אסימטרי, הראינו שאסימטריה זו משפיעה בעיקר על  - הגל של המתח במוליך

ובזרמים נמוכים, זאת בהתאמה במתח שאינו בפאזה עם השדה ושההשפעה שלה גדולה יותר בתדרים גבוהים   השיא

על, וכן העלייה בשימוש בהם, תוצאות אלו יכולות לשחק תפקיד חשוב  -עם העלייה בביקוש עבור חוטים מוליכי לתיאוריה.
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