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ABSTRACT

Development of high-power superconducting applications requires the accurate estimation of AC losses in the superconductor. In applica-
tions such as superconducting magnetic energy storage, the charge/discharge/persistent switching frequency of the coil, resulting from pulse
width modulation control algorithms, is usually in the kilohertz regime. Therefore, a thorough investigation of the losses in the kilohertz
regime of AC currents superimposed on large DC currents is essential in order to ensure the device stable operation at a predefined tempera-
ture. We describe here a unique experimental setup designed and built for characterizing AC losses in superconducting wires and coils under
such special conditions. To minimize the eddy currents induced in the apparatus, a cryostat vacuum vessel was made of Delrin, an insulating
synthetic polymer. The measurement setup allows driving DC currents up to 150 A and superimposed AC currents with amplitudes up to
10 A and frequencies up to 18 kHz. The system utilizes conduction cooling to reach a wide range of temperatures between 6 and 100 K and
allows measurements of 10 cm long superconducting wires and coils with a diameter of 40 cm. The loss is measured by the electrical method,
i.e,, by direct voltage and current waveform measurement, achieving a resolution better than 100 nW. The system described here will assist in

developing superconducting wires and coils for high-power applications.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5099559

I. INTRODUCTION

Estimation of AC losses in superconductors and understand-
ing of their origin are critical for applications. Their importance
increases even further when the superconducting device is cooled to
its operation temperature by conduction-cooled cryogenfree meth-
ods, where a slight imbalance between the heat load and the cool-
ing power may result in a thermal runaway which disables the
device operation. Measurements of the AC losses in applications
such as Superconducting Magnetic Energy Storage (SMES)," Fault
Current Limiter (FCL),” and High-Voltage DC (HVDC) cables’
present a unique challenge. In these applications, the supercon-
ducting cable or coil carries DC current on which an AC rip-
ple current, resulting from switching, is superimposed. In SMES,
for example, the charge/discharge/persistent switching frequency
of the coil resulting from Pulse Width Modulation (PWM) con-
trol algorithms is usually in the kilohertz regime. Therefore, a
thorough investigation of the AC losses in the kilohertz regime is

essential in order to ensure the device stable operation at a prede-
fined temperature.

A common way to measure AC losses is based on the “electri-
cal method”"” in which the current and voltage of the specimen are
measured with a lock-in amplifier; the in-phase voltage component
represents the losses. This method provides data with relatively high
precision and is independent of the cooling approach. Numerous
works describing measurements of AC losses in superconducting
materials are documented in the literature, see, e.g., Refs. 6-11. How-
ever, most of the published studies focus on measurements at rela-
tively low frequencies, usually around the grid frequency, 50-60 Hz
and up to 400 Hz.”'*"" In addition, to the best of our knowledge,
studies of AC losses for AC current superimposed on DC current
are hardly available. In addition, while superconducting films, tapes
and wires are extensively studied, AClosses in superconducting coils
are rarely reported, see, for example, Refs. 16-18. It is the purpose
of this article to describe a novel design of a system that enables
measuring high-frequency AC losses of superconducting wires and
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coils carrying AC currents superimposed on DC currents. The
experimental setup described here enables direct electrical measure-
ments of the AC losses in superconducting wires and coils at tem-
peratures between 6 and 80 K, with a loss resolution of 100 nW. The
system allows measurements under operation conditions expected
in a future SMES application, namely, conduction-cooled speci-
men, DC currents of 150 A (about 50% of the practical critical
current of a wire strand), and relatively small AC ripple currents
(up to 8 Ay in our system) and frequency range up to 18 kHz.
While motivation for developing this system was measuring AC
losses in MgB, samples, the system is, of course, not restricted to
MgB, and can be used for any superconductor with high enough
transition temperature, Tc, such as the pnictidesw and high-Tc
superconductors.”””

In the following, we describe the challenges associated with the
design of such an experimental device, and the ways to overcome
them. We describe in detail the various parts which compose the
system and exhibit some experimental results to demonstrate the
capabilities of the system.

IIl. INSTRUMENT DESIGN AND DEVELOPMENT
A. Challenges in system design

In Table I, we summarize the main challenges in designing and
building a system for measuring AC losses in superconducting wires
and coils resulted from high-frequency AC currents superimposed
on large DC current. These challenges stem from the system require-
ments, namely, a large measurement volume, minimizing eddy cur-
rents, superposition of AC-DC current, conduction cooling, and the
use of large DC currents transported from room temperature down
to cryogenic temperatures.

As the system is made primarily for measuring MgB, wires and
coils (T = 39 K), we set the lowest temperature for the measurement
system to around 10 K. Further lowering the setup base temperature
seems practically unnecessary because at lower temperatures, MgB,
shows a high level of flux jumps’>”’ and is less stable. We reach the
target temperature by using closed cycle cryocoolers, avoiding the

TABLE I. Measurement of system requirements.
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use of liquid helium and the logistics, and maintenance involved in
using it.

B. Cryostat assembly and cryocoolers

Taking into account the limited cooling power of cryocoolers,
we built a multistage conduction-cooled system shown schemati-
cally in Fig. 1. The 1st cooling stage is based on an Edwards (0/40)
cryocooler. Its purpose is to cool all the wiring which enters the cryo-
stat including the massive current leads. This cryocooler, that has a
cooling power of 40 W at 77 K and can reach 30 K without load,
absorbs all the heat flowing into the cryostat from the room tem-
perature side through conduction and Ohmic losses in the copper
current leads. Parts of the radiation shields described below are also
connected to the 1st stage. In equilibrium at 50 K, the Ist cooling
stage allows the use of the “cryosaving” technique, namely, current
carrying leads made of high temperature superconductors such as
BSSCO or YBCO which connect the 1st stage to the 25 K 2nd stage.
These leads have two significant advantages. First, they carry the
high current to the measured specimen with zero joule heating for
DC currents. Second, they reduce significantly the heat flow between
the 50 K 1st stage and the 25 K 2nd stage due to the relatively small
cross section of the tape. It is important to note, however, that high
frequency AC currents do generate heating and AC losses in the high
temperature superconductor (HTS) interconnecting cryosavers. To
overcome this expected extra heat generation, the HTS tapes are sol-
dered all along with indium to a 0.5 mm thick copper strip that con-
ducts the extra heat to the cryocoolers, 1st and 2nd stages. Of course,
while this copper strip increases the thermal stability, it comes with a
cost of increasing also the heat flow from the 1st to the 2nd stage and
therefore its cross section is minimized. The 2nd stage cools down to
25 K by an Edwards 6/30 cryocooler (6 W at 20 K and 28 W at 77 K).
It serves as a middle-point heat sink for the current leads and as a
thermal anchor for all the wiring such as thermometers and voltage
taps. The thickness of the copper strip soldered to YBCO tape in the
current leads between the 2nd and 3rd stages is reduced to 0.1 mm.
The 3rd stage utilizes Sumitomo RDK408, a 1 W cooling power at
4 K cryocooler on which the measured specimen is mounted. This

Requirement

Challenge

Overcome radiation, convection and conduction heat
losses using limited cooling power

Use of as little as possible metal components while main-
taining good thermal conductivity, mechanical strength,
and stability

Eliminate ripple effect on DC power supply, avoid cross-
talk between AC and DC circuits, clear 50 Hz, and power
supply switching frequency and harmonic noises

Reach operation temperature lower than 10 K with low
cooling power with high temperature homogeneity over the
measured wire/coil volume using no copper for mounting
support

High inward heat flow to the cryostat due to ohmic and
conduction losses in the leads

Large volume

Minimizing eddy currents

Superposition of AC-DC current

Conduction cooling

Current leads of up to 150 A
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FIG. 1. Schematic description of the cryostat assembly. (a) Edwards 0/40, (b)
Edwards-6/30, (c) Sumitomo RDK-408D2, and (d) superconducting sample (coil
in this scheme).

last cooling stage maintains the temperature of the measured wire or
coil.

C. Eddy currents

In studying AC losses in wires and coils, it is crucial to make
sure that the cryogenic surroundings do not affect the measurement.
The main source of the possible effect on the AC loss measurements
is the loss generated by eddy currents induced in various parts of the
cryostat and cryocoolers. In addition, the magnetic field around the
specimen can be altered by the eddy currents, contributing to false
results. To minimize such artifacts, the use of electrically conductive
and/or magnetic materials has to be minimized. For this reason, the
whole cryostat enclosure is made of Delrin, an insulating synthetic
polymer characterized by its high strength, hardness, and rigidity.
The main cryostat body is cut out from two bulks of Delrin material.
(The use of two pieces instead of one for the main body was dictated
by the limitation of the workshop machinery.) Special care has to be
given to sealing the connections between the Delrin plates in order to
ensure the vacuum (10~ Torr) necessary for the measurements. The
inner dimensions of the cryostat are 56 cm (width) x 24 cm (height)
x 44 cm (depth), allowing loss measurement in coils up to 40 cm
in diameter. All three cryocoolers are attached to the bottom Del-
rin plate. The top cover is also made of a Delrin plate. The thickness
of each Delrin plate is 25.4 mm. The system is highly scalable. The
only limitation for scalability is the vacuum vessel which is harder
to manufacture with composite materials due to very large forces.
As far as we know, the 2 m OD cryostat made of such materials
exists.

The total face area of the cryostat is quite large and requires
excellent shielding for minimizing thermal radiation. All internal
faces of the cryostat are, therefore, covered with five blankets of
multilayer super-insulation (MLI). Each blanket consists of 10 lay-
ers of aluminized mica with a weaved spacer in between, 50 layers in
total. In addition, an actively cooled radiation shield which is ther-
mally anchored to the 1st stage. We could not use regular copper

ARTICLE scitation.org/journal/rsi

sheets as radiation shields because of the expected induced eddy
currents. The other common solutions, such as Alumina (Al,O3),
Aluminum Nitride (AIN), or Boron Nitride (BN), are not practical
because of the high cost involved in shielding the cryostat large area.
An innovative solution was implemented to overcome this problem,
based on a commercial weaved mesh made of 0.15 mm thick copper
wires with 0.25 mm spacing, see Fig. 2. To avoid eddy currents in
the mesh loops, we oxidized the mesh, forming a layer of Cu-oxide
that coats not only the wire surface but also the overlapping wire
junctions. The mesh was sampled at random locations to verify that
no electric contact exists between mesh’s wires. (The induced eddy
currents inside each copper wire have a negligible effect due to the
small wire diameter.) We then soldered one end of the mesh blanket
to a copper braided cable and anchored to the cryocooler, generat-
ing high thermal conductivity in one direction (along the X axis in
Fig. 2). Several mesh blankets were used in order to avoid any pos-
sible electrical conduction path around the perimeter of the cryostat
(i.e., a close loop around the coil). An additional layer of the MLI
blanket was thoroughly attached to the copper mesh to screen pos-
sible thermal radiation penetrating through the mesh. The problem
of eddy currents becomes even more important at locations closer
to the specimen (wire or coil). The cooling path to the specimen
was therefore made of bulk, hot-pressed Boron Nitride (BN), an
electrically nonconductive material with high thermal conductivity
(70 W/m K).

D. Sample holders

A special BN stage was designed for the measured supercon-
ducting wires. The stage was placed on a copper plate on top of the
4 K stage cryocooler. To improve thermal contact, the wire was cov-
ered with cryogenic thermal grease Apiezon N, mixed with 1 ym
boron nitride particles serving as a volume filler. Another piece of
BN applies pressure from the top to ensure thermal contact and
improve temperature homogeneity. The ends of the wire are sol-
dered with pure indium to the current leads, leaving 80 mm of the
wire length free of any metal around. The voltage taps are con-
nected 50 mm apart. Voltage taps are soldered with pure indium
as well to minimize thermoelectric effects. The voltage taps are con-
nected in a way that forms “8” shaped loop.” This way the pick-up
loops are divided into two halves that cancel out the induced voltage

4 Soldered edge
A 1 I

» X

FIG. 2. lllustration of a weaved mesh made of 0.15 mm diameter insulated copper
wires with 0.25 mm spacing.
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picked up by the loop. The distance from the edge of the specimen
is at least twice the specimen width. Two 10 Q 50 W heaters are
attached to the copper plate from both sides of the BN podium.
A calibrated silicone diode thermometer is screwed to BN with
ceramic bolt and small spring washer to maintain pressure after cool
down.

The design is slightly different for measurements of super-
conducting coils. A 6 mm thick copper plate is connected to the
cryocooler [Fig. 3(a)]. The copper plate has a round center hole
of 140 mm in diameter and a 5 mm slit for reducing eddy cur-
rents. On top of it, a 200 mm diameter and 20 mm thick BN disc
is placed. The contact area between the BN disc and the copper
plate is 15000 mm?, large enough to eliminate any temperature
gradients between the surfaces. On top of the BN disc, the coil
is placed and pressed against with a fiberglass plate [Fig. 3(b)].
Since the coils had a diameter smaller than the hole in the copper
plate, only a small fraction of the flux lines penetrates through the
copper. This significantly reduces the eddy currents in the copper
plate and therefore improves measurement precision and thermal
stability.

E. Cool down

A vacuum of 107> Torr was achieved in the Dewar after
10 h of pumping with a conventional rotary vane pump (Edwards
5). Only then, the cryocoolers were started. Due to cryopumping,
the pressure dropped to 107 Torr. The system base temperature
is 6 K for short wire samples and 10 K for coils. Recording of
the system cool-down process with the sample holder option for
short wires measurements is shown in Fig. 4. A steady tempera-
ture of 6 K at the sample holder was achieved after 4.5 h. Figure 4
also shows the temperatures measured at the radiation shields at
two different locations (A—top cover of the cryostat and B—side
wall). Higher measurement temperatures were reached by power-
ing the heaters with proportional-integral-derivative (PID) control
algorithm.

F. Current source

Another important aspect of the measurement system is the
current source. As previously mentioned, the SMES operates at a

FIG. 3. Design of the coil assembly for AC loss measurements (schematic). (a)
Copper plate connected to 4.2 K cryocooler and (b) assembled coil with boron
nitride former on the copper plate.
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FIG. 4. Radiation shield and sample holder temperatures vs time during the cool
down of the system with short wire sample. Sample holder (blue solid line), Radi-
ation shields: A—top of the cryostat, B—side wall. Inset: a zoomed-in image of
sample holder temperature.

high DC current level accompanied with high frequency AC rip-
ple component. This AC component may be of very low amplitude
during compensation charging or be quite significant during dis-
charge. In both cases, the frequency of those AC ripples can be as
high as 10 Hz. To mimic this combination of DC and AC cur-
rents flowing through the specimen, a special setup was built. This
setup—described schematically in Fig. 5—is capable of driving DC
currents of hundreds of amperes alongside AC current with ampli-
tudes ranging from milliamperes to tens of amperes at frequencies
up to 18 kHz. The setup is composed of Xantrex power supply, which
drives DC currents up to 300 A, a supercapacitor bank of 1000 F
connected in parallel, and a homemade air transformer connected
in series with its secondary windings to a calibrated noninductive
0.5 mQ shunt and the measured wire or the coil. The primary side
of the air transformer is connected to an AC current source which is
basically a signal generator amplified by a professional high-power
6 kW per channel audio amplifier. A 2 Q resistor is required to
avoid shorting the amplifier. The DC current also flows through the

HP8904A
Signal Generator

+,

Behringer NU12000
Audio Power Amplifier

Air core
transformer 0.5 mQ
[—] Shunt
naihe VW
o — 1
Xantrex 1000 F Specimen
DC power -|— —|_ Supercapacitor
supply bank

FIG. 5. Electrical scheme of the AC/DC current supply for the measurement system.

Rev. Sci. Instrum. 90, 065111 (2019); doi: 10.1063/1.5099559
Published under license by AIP Publishing

90, 065111-4



Review of

Scientific Instruments

secondary circuit where the AC current is injected. The DC power
supply cannot withstand high AC currents and maintain stable DC
current. The supercapacitor bank serves as a bypass route for the
AC signal preventing it from flowing through the DC power sup-
ply. It also provides a low pass filter for the high frequency switching
noise produced by DC power supply. An additional use of the super-
capacitors, after being charged and disconnected from DC power
supply, is to produce exponential current decay with high enough
time constant. This approach mimics the quasi-DC discharge of the
SMES. The total resistivity of the loop is ~30-40 mQ which gives a
time constant of ~40 s. Although the magnetic coupling of air trans-
former is much worse than in magnetic core based transformers, it is
basically the only reasonable option because there is a constant high
DC current flowing through the secondary winding which would
immediately saturate the magnetic core.

The combination of signal generator and audio power ampli-
fier requires a control based on a feedback loop to set the desired
current. The selection of an audio amplifier as an AC current
ripple source for the setup was based on its “clean,” low har-
monic distortion properties and the audio frequency range (20 Hz-
20 kHz), which perfectly matches the required conditions for the
experiments.

The pulse nature of PWM waveform introduces copious
amounts of high harmonics. High precision current and voltage
measurements are, therefore, required for numerically calculating
the energy dissipated in the wire. For this purpose, we used a cali-
brated precision power analyzer PPA-5510 by Newtons 4th. It has an
accuracy of 0.01% in voltage, 0.01% in current, and 0.005° in phase
measurements. It also allows us to measure harmonics in current
and voltage independently up to the 40th harmonic and the total
harmonic distortion (THD).

To calibrate the system, we performed a series of measurements
using a copper Litz wire sample of 180 strands, 40 ym each. The
use of Litz wire is necessary to avoid additional losses over the DC
Ohmic losses, which, in a single filament copper wire, increase with
frequency due to the skin effect. With copper Litz wire, we were able
to achieve the accurate measurement of 10 nW + 0.1 nW. How-
ever, switching to the superconducting specimen reduced dramat-
ically the measured voltage at low frequencies resulting in an overall
measurement resolution of 100 nW + 2 nW.

G. Control and data acquisition

All the system instruments are controlled in an MATLAB envi-
ronment. The developed MATLAB code has graphical user interface
(GUI) and all the required automation for the measurements. It also
involves a feedback loop for AC and DC currents and a PID for
temperature control. The measurement routine scans all the com-
binations of AC current amplitudes, frequencies, DC currents, and
temperatures as defined by the user. It also involves protection algo-
rithms by constantly monitoring the sample temperature and its
time derivative to stop the current if the sample is over heated.

H. Experimental tests

24,25

Preliminary measurements of MgB, """ and pnictide wire and
tapes'~ were already reported. In Fig. 6, we show typical results
for a 36 filamentary MgB, wire with Monel sheath. The wire, with
an outer diameter of 1.3 mm, was manufactured by Columbus
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FIG. 6. AC loss measurements of 36 filamentary MgB, wire at 10 K, 40 A DC
current, frequencies from 57 Hz to 18 kHz, and AC amplitudes from 0.5 Ams to
8 Arms-

Superconductors.” The measurement displayed here was per-
formed at 10 K, 40 A DC current at frequencies up to 18 kHz, and
AC amplitudes from 0.5 A to 8 Arms. One can clearly see the losses
ranging from lowest values of 100 nW to 0.1 W. Above 100 nW, the
measurements are very stable and repetitive.

I1l. SUMMARY

We described here a unique experimental setup for measur-
ing AC losses in superconducting wires and coils. The setup focuses
on special operation conditions where the superconductor carries
high levels of DC current with high-frequency AC current ripple
superimposed on it. The system achieves a resolution of 100 nW
utilizing a direct voltage and current waveform measurement. To
minimize eddy currents within the experimental setup, a special
Delrin-made cryostat was designed and built along with a special
oxidized cupper mesh as active shielding and BN made sample hold-
ers. An accurate DC-AC superimposed current was achieved utiliz-
ing a supercapacitor bank in DC and AC circuits coupled through an
air transformer. The system described here is highly scalable and will
assist in developing superconducting wires and coils for high-power
applications.
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Abstract—AC losses for a wide range of ac amplitudes and fre-
quencies have been studied in magnesium diboride (MgB- ) super-
conducting wire with 36 filaments and Monel sheath at different
temperatures and dc current levels. The results show a strong non-
linear frequency dependence below 1 kHz, which crosses over to
a more moderate linear behavior at frequencies up to 18 kHz.
Surprisingly, the introduction of dc current causes a significant re-
duction in the ac losses. Finite element simulations yield ac losses
consistent with that observed experimentally. The simulations show
that the magnetic Monel sheath is a dominant source for ac losses
in zero dc current and that nonzero dc current saturates the mag-
netization, thus reducing the ac losses.

Index Terms—AC losses, finite element method (FEM), magne-
sium diboride (MgB- ), superconducting magnetic energy storage
(SMES), superconducting filaments and wires.

I. INTRODUCTION

INCE its discovery in 2001 [1], magnesium diboride
S (MgB») has become one of the most attractive supercon-
ducting materials for applications. The relatively low cost of
MgB, wires and its moderately high critical temperature of
~39 K made it a promising candidate for use in power applica-
tions such as superconducting magnetic energy storage (SMES)
[2]-[5] and high voltage direct current (HVDC) lines [6]-[8].
Although the base power frequency is 50/60 Hz, both applica-
tions utilize the pulsewidth modulation (PWM) technique [9]
with frequencies of several kilohertz for conversion from dc
current to ac current. In such applications, the superconductor
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carries dc current on which ac current ripples are superimposed
due to the very nature of high frequency switching used in the
PWM technique with a wide-range duty cycle. In SMES, ac
ripples are present both in the standby mode, where switching
is used only for compensating the current decay, and in charge
and discharge cycles, where the power is converted from ac to
dc or vice versa. A typical PWM base frequency is 3 kHz and
the ripples are usually nonsinusoidal. It is, thus, important to
characterize the frequency dependence of the losses up to, say,
the fifth harmonics (i.e., 15 kHz). Therefore, it is important to
measure the ac losses in this frequency range and understand its
origin. Extensive research work has been done on ac losses in
MgB; wires, tapes, and cables [10]-[26]. In several papers, e.g.,
[11], [14]-[16], the main goal was the investigation of the mag-
netization ac losses in MgB, wires in the presence of external
magnetic field but without transport current. Many others fo-
cused on transport ac losses [17], [18], [23]-[26] but without dc
current. Several others [19]-[21] reported on the losses for the
combination of dc current and ac ripples but at frequencies much
lower than required for typical PWM use. Thus, the available
research works cover only partially the conditions required for
SMES/HVDC applications. The need to explore the behavior of
MgB, superconducting wires at high frequencies is evident and
turns crucial as the potential for high-power MgB5 applications
becomes realistic.

For practical applications, the study of ac losses is of extreme
importance especially for conduction-cooled superconductors
where cooling power is very limited. In such cooling, failure to
estimate the energy dissipated within the coil under real operat-
ing conditions may result in insufficient cooling power to main-
tain a constant operating temperature and eventually a thermal
runaway in the superconductor. We measured the ac losses in
the MgB, wire produced by Columbus Superconductors [27]
with 36 filaments and Monel outer sheath, using an electrical
method [28]. For this purpose, a unique experimental setup,
based on conduction cooling and electrically nonconducting
cooling bus, designed for measuring ac loss in superconducting
wires and coils in a frequency range up to 18 kHz was built.
To clearly understand the loss mechanisms, a two-dimensional
(2-D) finite element method (FEM) simulation [29], [30] based
on H-formulation, was adopted. The numerical model calcu-
lated the spatial and temporal dependence of the magnetic field,
taking as input the electrical properties of the superconductor
described by the E—J power law and the electrical resistivity and
nonlinear magnetic properties of the Monel.

1051-8223 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Schematic description of the cryostat assembly. (a) Edwards 0/40.
(b) Edwards 6/30. (c) Sumitomo RDK-408D2. (d) Superconducting sample
(coil in this scheme).
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Fig. 2. Electrical scheme of the measurement system.

II. EXPERIMENTAL

All the results depicted in this paper were acquired in a home-
made system designed for measurements of ac losses in super-
conducting wires, tapes, and coils. The cryogenic part of the sys-
tem, described schematically in Fig. 1, comprises a cryostat and
three cryocoolers. The cryostat is made of Delrin to eliminate
eddy currents in the cryostat walls due to alternating magnetic
fields, and its volume is sufficient to contain coils of diameters
up to 60 cm. The cryocoolers—Edwards 0/40, Edwards 6/30,
and Sumitomo RDK-408D2—are capable of reaching base tem-
peratures of 50, 25, and 3.8 K, respectively. The Edwards 0/40
and the first cooling stage of the 6/30 are used for cooling the
current leads and peripheral cabling, while the Sumitomo cold-
head cools the sample. YBCO current leads to connect the 25
and 4 K stages.

AC loss measurements are based on the electrical method
[28], namely, measuring the time integral of the product I-V
waveforms per cycle. Electrical scheme of the measurement
setup is presented in Fig. 2.

DC current is supplied by Xantrex (20-300) power supply
connected in parallel to a 1000 F supercapacitor bank. The

Fig. 3.
wire with a Monel outer sheath.

Image of the cross-section of a 1.3 mm diameter, 36 filamentary MgB2

capacitor bank serves as a high-pass filter to eliminate ac cur-
rents passing through the dc power supply and filter high-
frequency noise from the switching dc power supply. AC current
is driven by a Behringer NU12000 6 kW/ch high-power audio
amplifier and coupled to the measurement circuit through an
air transformer connected in series to the main loop. The sys-
tem, thus, allows superimposing dc and ac currents through
the measured sample. Voltage taps are mounted on the sample,
50 mm apart. The total length of the wire is 180 mm. The current
through the wire and the voltage across the taps are measured
by the Newtons4th PPA5510 high-precision power analyzer.
The instrumentation is connected and controlled by MATLAB
environment with feedback loop to stabilize the currents.

The measurements described here were conducted on a
1.3 mm diameter, 36 filamentary round MgB, wire with the
Monel matrix, produced by Columbus Superconductors. The
critical current of a similar wire is about 1000 A at 10 K in
self-field [22]. The filaments are distributed in three layers, as
shown in Fig. 3. The MgB, wire sample is cast in alumina grains
of various sizes impregnated with epoxy to ensure thermal con-
ductivity and efficient heat removal while making sure that there
are no electrically conductive materials in the range of at least
15 mm from the sample.

In realistic use of superconductors in power applications, the
dc current is in the range of hundreds or even thousands of
Amperes, while ac current components are only a few % of it at
most. The losses were measured with amplitudes of ac current
from 0.5 to 8 A,,,5, Which represent the relatively small fraction
of high dc current amplitude. However, our experimental setup
(see Fig. 2) does not allow for currents above ~50 A due to the
small air transformer, which limited the dc current to be only 40
A. Despite this relatively small dc amplitude, the measurements
results show virtually no influence of further increase of dc
current.

III. RESULTS

Sinusoidal ac currents of amplitudes from 0.5 to 8 A,,,s and
frequencies from 57 Hz to 18 kHz were driven through the
sample, superimposed on dc currents from zero to 40 A in
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Fig. 5. AC losses as a function of frequency for the indicated ac current
amplitude for (a) Iy, = 0 and (b) /5. = 40 A.

self-field. The measurements were performed in a temperature
range from 5.5 to 35 K. Fig. 4 shows the measured energy loss
per wire volume per cycle at 10 K as a function of the ac current
amplitude and frequency, in zero dc current. As expected, the
energy loss increases upon increasing either amplitude or fre-
quency. As depicted in Fig. 5(a), we observe a strong nonlinear
dependence of the loss on the frequency. Up to ~1 kHz there is
a fast increase of the ac losses with frequency, crossing over to
a slow, approximately linear increase at high frequencies. This
change in the behavior suggests a crossover between two dom-
inant mechanisms of ac loss formation. These mechanisms will
be discussed in the next section.

Fig. 5(b) shows the frequency dependence of the loss with a dc
bias current of 40 A. Comparing Fig. 5(a) and (b), it is apparent
that the dc current reduces the loss significantly, namely, losses
in the presence of a dc bias current are much less than those
without dc bias. In Fig. 6, we present this loss reduction resulting
from the additional dc current and show that losses in the 40 A
dc bias case are reduced by ~50% in comparison with the
zero dc bias case. As discussed later, this surprising behavior is
attributed to the magnetic properties of the Monel matrix.

Clearly, the ac losses depend on the ac current ampli-
tude. The higher the ac amplitude, the larger the relative loss
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Fig. 6. Loss reduction [%] due to the dc current of 40 A for ac currents
amplitudes of 2, 3,4, 5,6 A.
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Fig. 7. AC losses as a function of dc current bias and temperature for
(a) 217 Hz, 8 A ac current and (b) 16 017 Hz, 8 A ac current.

reduction (see Fig. 6). We emphasize again that we observe dif-
ferent behaviors for lower and higher frequencies ranges. This
can play a significant role in designing devices for power appli-
cation where not only grid frequencies (50/60 Hz) but also much
higher frequencies exist, like in the case of SMES or switching
modulations as PWM.

To have a clearer picture of the ac losses in the sample,
Fig. 7(a) and (b) presents the ac losses as a function of the
dc current and temperature for I, = 8 A and two representing
frequencies: 217 and 16 017 Hz. Apparently, at low frequen-
cies [see Fig. 7(a)], the initial increase of dc current results in
a gradual decrease in the ac losses, reaching a plateau around
~20 A. A different behavior is observed at high frequencies [see
Fig. 7(b)], where such a plateau is not reached and the decrease
in ac losses is more moderate at high dc currents. The temper-
ature dependence is also nontrivial. In both cases, we observe
higher losses for temperatures below 10 K, with a minimum at
15 K. The losses then gradually increase with the temperature
from 15 to 35 K. Since dc current levels are way below the
critical current, such a strong temperature dependence is not
expected.

Eddy currents loss per cycle increase linearly with frequency,
but the hysteresis loss in superconducting filaments is expected
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Fig. 8.  Exponent b of power law-fit of the current amplitude versus frequency
for zero dc bias (squares) and 40 A dc bias (stars).

to be frequency independent [31]. Additional step of data anal-
ysis is, therefore, a power-law fit of the loss Q, Q(I) ~ I?, for
every frequency of the ac current both for zero and for 40 A dc
current. Fig. 8 shows the frequency dependence of the exponent
b derived from the fit versus frequency. For zero dc bias, the
exponent value is close to 3 at low frequencies, indicating mag-
netic hysteresis loss in the MgBs superconducting filaments.
As frequency increases, the exponent decreases, indicating that
eddy currents and magnetic hysteresis losses in the Monel ma-
trix become dominant. We suggest that the eddy current losses
in the Monel are dominant at the frequency range discussed here
because of its low electrical resistivity and high permeability. A
similar conclusion, though for different materials and different
frequency ranges, was suggested also in [10] and [12].

As is clear from Fig. 8, the exponent b in the presence of 40 A
dc bias current is practically frequency independent and close to
2. This value is quite counterintuitive since magnetic saturation
of the Monel should reduce the magnitude of eddy currents and
virtually eliminate the hysteresis loss in the Monel, leaving the
MgB, hysteresis dominant with exponent b of ~3 (at least at
low frequencies). Further investigations of the magnetic fields
distributions and currents in the wire are necessary to explain
this behavior.

IV. SIMULATIONS

To better understand the origin of the reduction in the ac
losses, we used an FEM in COMSOL software package to
analyze a model of the wire based on similar properties and
conditions as in the experimental section. A time-dependent H-
formulation 2-D model was used. A 2-D space implies infinite
wire length. The total current in the wire is relatively small and
flows only in 18 filaments out of 36 on the outer layer of the
wire. The whole inner part of the wire is screened from the
magnetic field. Due to the symmetry, only azimuthal magnetic
field is present, which does not cross any area between the fila-
ments and thus does not produce any filament coupling effect.
This allows us to save computational time by simulating only
1/18 of the wire. The total current in the wire was taken as
Lesin(27 ft) + Iqc(1 — e7f"), where I, and Iy are ac and
dc current amplitudes, respectively, and fis the frequency. The

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 28, NO. 8, DECEMBER 2018

- —Zero DC bias
. 04 © - 40A DC bias
- — L+
g '—‘-‘\(\d] r”-‘\"
S 0.2
S (a)
—
Q
=N (b)
=
o
4]
- 0.2
0 1 2 3 4
time [ms]

Fig. 9. Time dependence of the magnetic flux density in the outer part of the
wire, for (a) zero dc, max ac current, (b) zero dc, zero ac, (c) 40 A dc, max ac,
and (d) 40 A dc, zero ac.

exponential term that multiplies I is required since the time-
dependent H-formulation model has to start from zero field.
The dc current was either zero or 40 A. In both cases, the ac
current was 8 A, s at 500 Hz. The simulation ran for 15 cycles
to eliminate the initial current ramping effects. The losses were
calculated only for the last cycle by surface integration of the J-E
term over all the filaments and the Monel independently. The
Monel material was described by the y—H curve with saturation
at 0.2 T (a value obtained in independent measurements exploit-
ing a “quantum design” MPMS magnetometer at low tempera-
tures and fitting the data to 1, = 14+ ¢y (1 — e~ ) /H) with
C7 = 155600and Cy; = 905). The Monel electrical resistivity
is 3.65-107" Q-m [2].

Due to the nonlinearity of the magnetization of the Monel,
the magnetic field at a specific point depends on its distance
from the filament. This led us to average the magnetic field over
the Monel area outside the filament. Fig. 9 displays the spatial
average of the magnetic flux density versus time in the outer
part of the wire for both cases during two cycles. The difference
in the flux density between maximum ac current (a) and zero ac
current (b) with no dc current is 0.11 T, while in the case of 40
A dc current (c and d), the difference is only 0.04 T.

Fig. 10 shows four snapshots of the solution for the same
points (a, b, ¢, d). The red-blue color code represents the current
density inside the superconducting filaments and the blue-white
code stands for the magnetic flux density in the Monel sheath.
For the convenience of the presentation, only 3 of the 18 outer
filaments are shown. In all cases, the current density is concen-
trated on the outer part of the filaments and only small portion
of the filament’s cross-section carries the current. The central
part of the wire is totally screened of currents and magnetic
fields. Electric field is induced in the metal sheath, and thus
eddy currents losses are proportional to the magnetic-field time
derivative (dB/dt). When no dc bias current flows in the wire,
the ac current causes a maximum magnetic flux density change
during the cycle due to high permeability of the Monel at low
magnetic fields. On the contrary, introducing a 40 A dc current
saturates the Monel sheath and reduces the permeability, thus
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Fig. 10.  Snapshot of simulation results. RGB color code stands for current
density in the MgBy filaments, brightness of blue stands for magnetic flux
density in the Monel. The panels describe J and B for the four cases marked in
Fig. 8, namely, (a) zero dc, max ac current, (b) zero dc, zero ac, (c) 40 A dc,
max ac, and (d) 40 A dc, zero ac. The thin blue area in (d) at the edge of the
filament corresponds to the decrease of the total current compared to (c).

reducing the magnetic flux change and the eddy current losses,
consistent with the experimental results.

At selected amplitudes and frequency, we see total domina-
tion of losses in the Monel (1.08-1077 J/cycle) over losses inside
MgB, filaments (2.04-108 J/cycle). However, we see only about
50% loss reduction in the experiment and much higher reduc-
tion in permeability when the Monel is saturated (at least ten
times). The cause of this difference might be the fact that we use
the dc permeability of the Monel in the model. Ferromagnetic
materials behave differently when ac magnetic fields are present
especially at low temperatures. As was shown in [3], the Monel
used in MgB, wires has its own hysteresis losses. In fact, a
frequency-dependent hysteresis mechanism in the Monel is in-
volved, reducing the effective ac permeability of the material
and introducing additional losses [4].

V. SUMMARY AND CONCLUSION

We presented the first results of ac loss measurements of
MgB, wires for frequencies up to 18 kHz, exploiting a recently
built novel system that enables a superposition of dc and ac
currents in the sample while eliminating the electromagnetic
interference of the cryostat. The measurements and the accom-
panying simulations have shown a significant loss reduction due
to dc current. This effect originates from the magnetic satura-
tion of the Monel sheath by high dc current that results in a
pronounced reduction in the eddy currents.

For validation of the experimental result, a finite element
model has been built. The simulation clearly shows the satura-
tion of the Monel in the outer area of the wire, resulting in a
reduction in the magnetic flux change during the ac cycle, and
hence a reduction in the eddy currents.

6200906

Based on our experimental results and simulations, we con-
clude that under operating conditions typical of SMES, it is im-
portant to minimize the use of the magnetic matrix and search
for alternatives to the Monel. Resistive and nonmagnetic matrix
is preferable for applications utilizing high frequency switching.
If the Monel is still used, it is crucial to magnetically saturate
the matrix in all parts of the wire.
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Abstract—We present a study of the ac losses in MgB, super-
conductors under operation mode typical of applications such as
SMES and HVDC, utilizing large dc current superimposed with
small, switching frequency ac current. The ac losses in two MgB.
superconductors—a wire with 36 filaments in Monel sheath and
a tape with titanium sheath—are compared in a wide range of ac
amplitudes and frequencies up to 18 kHz, at different tempera-
tures and dc current levels. Strong influence of the sheath material
on the ac losses was found. The wire with Monel sheath shows a
strong nonlinear contribution of the magnetic material to the losses.
The losses reduce as the Monel approaches saturation at high dc
current. In contrast, losses in the tape with Titanium sheath are
practically independent of the dc level, and are smaller than losses
in the Monel wire for the whole range of measured parameters.
The results demonstrate the importance of further development of
nonmagnetic low-loss MgB, wires and tapes for applications that
involve exposure to ac ripple current in switching frequencies.

Index Terms—AC loss, MgB-, SMES superconducting magnet
energy storage.

I. INTRODUCTION

INCE its discovery [1], MgB, attracts interest as a low-cost,

high-performance material in superconductors applications
such as Superconducting Magnetic Energy Storage (SMES) and
High-Voltage Direct Current (HVDC). In these applications, the
superconductor operating in DC current carrying mode is also
exposed to a small AC current component superimposed on the
main large DC current. This AC current component may be a
result of residual grid frequency or switching frequency of the
surrounding power electronics. In the latter, switching frequen-
cies of Pulse Width Modulation (PWM) controllers would be
the origin for the AC current component in the superconductor,
typically in the range of 3-10 kHz. In SMES, the frequency
of the AC current component due to charge/discharge cycle is
also in the kHz range. Although small compared to the DC cur-
rent, the amplitude of this AC component can vary by orders
of magnitude depending on the actual grid energy need. While

Manuscript received September 18, 2017; accepted December 14, 2017. Date
of publication January 10, 2018; date of current version May 1, 2018. This
work was supported by the Israeli Ministry of Science, Technology, and Space.
(Corresponding author: Yasha Nikulshin.)

Y. Nikulshin, S. Wolfus, V. Ginodman, A. Friedman, and Y. Yeshurun are with
the Department of Physics, Institute of Superconductivity, Bar-Ilan University,
Ramat Gan 5290002, Israel (e-mail: yasha.nick@gmail.com).

M. Tropeano and G. Grasso are with Columbus Superconductors SpA, Gen-
ova 16133, Italy.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASC.2018.2791808

most recent works have studied the AC loss performances in
frequencies from grid frequency up to several hundred Hertz
[2]-[4], little is known about loss performances of MgBs un-
der the above described operating conditions, namely large DC
current superimposed with small AC current in the kHz regime.

Studies of AC loss in MgB, addressed the superconductor
coupling and hysteresis as sources for generation of loss, see,
e.g., Refs. [5]-[7]. Young et al. [8] pointed to a contribution
from the ferromagnetic sheath in the wire but concluded that the
coupling current is the dominant factor for the losses in applied
field. Gomory et al. [9] suggested that adding a magnetic layer to
BSCCO or MgBs may reduce the AC losses with the alteration
of the magnetic field path in the wire. Several research groups
have shown that magnetic materials in superconducting wires
have an impact on AC losses, see, e.g., Refs. [10] and [2], [4].
In a recent work [11], we have demonstrated that MgBs mul-
tifilament wires embedded in Monel magnetic matrix, present
significant losses in the magnetic matrix when in mode of su-
perimposed DC and AC current at typical switching frequency.
It was suggested that the high frequency ripple in the supercon-
ducting filaments induces large flux changes which results in
eddy current losses within the Monel matrix which dominate
the AC losses of the entire wire.

In the present work, we further study the losses under such
operating mode where the MgB, superconductor is carrying
DC current with superimposed AC ripple current at frequencies
extending up to 18 kHz. Measurements are performed on MgB,
with magnetic (Monel) and non-magnetic (Titanium) sheath
materials. AC losses for both wires are compared at various
measurement parameters.

II. EXPERIMENTAL

Loss measurements have been conducted on two MgBs wire
specimens, both manufactured by Columbus Superconductors.
The first is a 36 filamentary, 1.3 mm diameter, MgB, wire with
Monel outer sheath and Nickel matrix. The critical current at
20 K and 1T is 500 A [12]. The wire cross-section is shown on
Fig. 1(a). The second is flat tape (2.85 x 0.45 mm?) consists
of 19 filaments surrounded by both titanium sheath and matrix
with 550 A critical current at 16 K, 1 T [13]. An image of the
cross section of each sample is shown in Fig. 1(b). A thin layer of
copper was chemically deposited on both ends of the 18 cm long
Ti-MgB, tape and then soldered with indium to current leads to
minimize contact resistance. The Monel wire did not require any
special techniques since Monel is easily soldered. The area of the

1051-8223 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Specimen cross section: (a) Monel wire with 36 filaments. The di-
ameter of the wire is 1.3 mm (b) Titanium tape (2.85 x 0.45 mm?) with 19
filaments.
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tape between the voltage taps remained untreated. Voltage taps
were mechanically attached to the tape, 60 mm apart. Electrical
resistivity values at 10 K as 3.65 x 107 and 14 x 10~7 Ohmem
for Monel and for pure Titanium, respectively [14].

AC loss measurements are based on the electrical method
[15], namely measuring the time integral of the product -V
waveforms per cycle. Electrical scheme of the measurement
setup is presented in Fig. 2. DC current is supplied by Xantrex
(20-300) power supply connected in parallel to a 1000 F super-
capacitor bank. The capacitor bank serves as a high-pass filter
to eliminate AC currents passing through the DC power supply
and filter high frequency noise from the switching DC power
supply. AC current is driven by Behringer NU12000 6 kW/ch
high-power audio amplifier and coupled to the measurement
circuit through an air transformer connected in series to the
main loop. The system thus allows superimposing DC and AC
currents through the measured sample. The current through the
wire and the voltage across the taps are measured by Newtons4th
PPAS5510 high precision power analyzer.
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Fig. 3. Loss vs frequency vs AC current at 10 K, zero DC current in (a) the
Monel wire, and (b) the titanium tape.

The instrumentation is connected and controlled by MAT-
LAB environment with feedback loop to stabilize the currents.
In measuring each of the samples, four parameters were changed
independently. Temperature was varied from 5 to 40 K, DC cur-
rent from O to 40 A, AC current from 0.5 to 8 A rms and
frequency from 57 Hz to 18 kHz.

III. RESULTS

The energy loss per cycle per length at 10 K and zero DC
current is shown in Fig. 3(a) and (b) for the Monel sheath wire
and the Titanium sheath tape, respectively. The figure shows
clearly that the Titanium tape has lower loss.

As demonstrated in a previous work [11], the inclusion of
magnetic materials in MgB, wires increases dramatically the
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Ratio

Fig. 4. Loss reduction ratio at 40 A DC vs frequency vs AC current at 10 K
relative to zero DC current in Monel wire (a), in titanium tape (b).

AC losses. However, such materials saturate in high enough
magnetic field, hence the magnetic loss contribution to the total
losses is expected to strongly depend on the magnetic state of
the matrix. Superimposed DC current to AC current produces a
DC magnetic field which saturates the Monel matrix surround-
ing the filaments and reduces the effective permeability. This
causes a significant reduction in AC losses with increasing DC
current. Fig. 4 demonstrates the effect of such saturation by
showing the ratio between losses obtained with the application
of finite DC current to losses with zero DC current for the Monel
wire [see Fig. 4(a)] the titanium tape [see Fig. 4(b)]. Fig. 4(a)

shows clearly a significant reduction in the loss in the wire due

to the application of 40 A DC. This loss reduction is evident
for all measured AC frequencies and amplitudes and reaches a

maximum of 14.3 at frequency of about 1 kHz and amplitude of
about 3 A. At the same time, the Titanium tape [see Fig. 4(b)]
is not affected by the DC current and for the whole frequency
and amplitude ranges the reduction ratio is practically one.

A further increase in the DC current still reduces the losses
in the Monel wire. This is shown in Fig. 5 for DC current up to
100 A. The data in this figure were obtained for 5 A, 3017 Hz
AC current. This frequency is of special interest because it is a
common operating frequency of PWM power electronics and
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Fig. 6. Ratio of losses between the Monel wire and the Titanium tape under
100 A DC current at 10 K.

represents the operation of the superconducting wire under
switching ripple mode. The figure demonstrates that deeper
magnetic saturation further reduces the AC losses.

Since practical usage scenario of superconductors involves
high DC currents the comparison of saturated Monel wire to Ti-
tanium is even more interesting. In Fig. 6 the loss ratio between
Monel wire and Titanium tape under 100 A DC current is pre-
sented. Again, the ratio is frequency and amplitude dependent.
The lowest ratio is 1.2 at 18 kHz.

As described in [8] the main source of loss at high frequencies
are eddy currents in the metal components of the superconduct-
ing wire. In deep saturation, the loss is mainly proportional to
the electrical conductivity of metal which for Monel is 3.8 times
higher than titanium. However different topology and higher
filament number could in principle suppress this ratio to lower
values. In any case, the results shown in Fig. 6 show that even
for the best operating conditions for MgB, Monel wires, losses
are still higher than in an equivalent MgB» Ti tape.
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IV. DISCUSSION

The introduction of DC current does not influence the AC
losses in Titanium tape. On the other hand, DC component
in Monel sheathed wire saturates the Monel and dramatically
reduces the losses. The reduction is DC and AC amplitude and
frequency dependent. Despite the loss reduction, our results
imply that a tape with Titanium sheath is superior to a wire
with Monel sheath for applications involving high frequency
switching. With high enough DC current, losses are reduced
to the same order of magnitude as in Titanium sheath tape.
However, losses in the Ti tape are smaller than in the Monel
even for the best operating conditions. The minimal loss ratio
of Monel wire to the Ti tape is 1.2. The difference in minimal
losses, where the magnetic matrix is deeply saturated, might
be the attributed to the different filament number and topology
and to the different electrical properties of Monel and titanium.
This work shows that the electromagnetic characteristics of the
matrix sheath in MgBs superconductors is crucial for the loss
performances of the wires. In particular, Monel sheathed wire
is less suitable than Titanium sheathed tape for use in SMES
coils because inside the coil there are always windings exposed
to low magnetic fields leaving the Monel unsaturated with high
AC losses when discharging the coil.
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Abstract

CrossMark

Finite element method (FEM) analysis is employed to study and compare AC losses in a wide
frequency range in two MgB, superconducting wires in self-field and in the presence of external AC
field. The modelled wires, of the same external dimensions, are mono- and 36-superconducting
filaments embedded in either magnetic Monel or a nonmagnetic metallic wire sheath. We

demonstrate that in a multifilamentary wire in self-field the Monel sheath serves as a ‘pole piece’ at
the filament outer surface and alters local magnetic fields, current flow and AC losses distribution
within the filament. In comparison with the nonmagnetic sheath with the same electrical
conductivity, AC current in the wire with the magnetic sheath penetrates significantly deeper into
the filaments and AC losses in the filament and in the magnetic sheath increase significantly. In
contrast, the symmetry of the monofilament wire makes the current and loss distributions in the
filament practically indifferent to the sheath composition. Still, losses in the magnetic sheath are
much higher than in the nonmagnetic sheath due to increased flux dynamics. The application of DC
current, on which the AC current is superimposed, sharply reduces the AC losses in the magnetic
sheath material due to the drop in its permeability. Filament losses are also reduced in the presence
of DC current, but to a much lesser extent. Results also show that in the kHz frequency range, the
magnetic permeability of the sheath increases the skin effect in both the wire and filaments complex.
As a result, at such frequencies, a significant portion of the current is carried by the metallic part of
the wire instead of the superconductor, contributing to a further increase in losses. The analysis also
shows that in the presence of external AC magnetic field, the Monel can provide magnetic shielding
for inner filaments, thus reducing coupling effects between filaments. However, if magnetically
saturated by the DC current, the Monel behaves quite similarly to a nonmagnetic sheath.

Keywords: MgB,, AC losses, superconducting magnetic energy storage, finite element method

(Some figures may appear in colour only in the online journal)

1. Introduction

Superconducting wires and coils used in high-current applica-
tions, such as superconducting magnetic energy storage (SMES)
and high-voltage direct current (HVDC), are often exposed to
small AC current ripples at frequencies in the 10* Hz regime,
resulting from pulse width modulation (PWM) control algo-
rithms [1-4]. These AC ripples can induce significant AC losses,

! Author to whom any correspondence should be addressed.

0953-2048,/19,/075007+12$33.00

generating heat that falls as an extra load on the cryogenic
system, increasing dramatically the cost of the device [2, 5-9]. In
addition, excessive AC losses in the superconducting wires is a
major factor in increasing the device instability and failure risk.

AC losses in superconducting materials are a well-studied
phenomenon [10—-12]. Superconducting wires, especially those
with a magnetic sheath, are less explored because of the
increased complexity due to the nonlinear magnetic nature of
the filaments and the sheath and their mutual coupling [13-16].
Moreover, most studies of AC losses in superconducting wires

© 2019 IOP Publishing Ltd Printed in the UK
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Figure 1. Wire topology of the model. Dark blue—superconducting area, light blue—metallic matrix. (a) Monofilament in self-field; 1/18 of
the wire is shown in the figure and used for simulation. (b) Outer layer filament of the multifilament in self-field, 1/18 of the wire is shown in
the figure and used for simulation. (c) Monofilament in external field, ¥2 of the wire is shown in the figure and used for simulation.

(d) Multifilament in external field, V2 of the wire is shown in the figure and used for simulation.

focus on relatively low frequencies, of up to several hundred Hz
[17-20]. In this work we use finite element method (FEM)
modelling to analyze the AC losses in frequencies of up to
12.8 kHz, in two MgB, superconducting wires composed of a
monofilament and 36-filaments embedded in magnetic (Monel,
70% Ni—30% Cu) and nonmagnetic metallic wire sheaths. The
simulations show clearly that the total AC losses depend
strongly on the magnetic properties of the wire matrix and
sheath. In particular, the eddy currents in the Monel matrix are
enhanced [13, 14], and its high permeability changes the
magnetic field penetration pattern inside the superconducting
filaments, contributing to additional hysteresis loss in the
superconducting material itself.

This paper is organized as follows. In section 2 we
describe the parameters used in the model for both the multi-
and monofilament superconducting wires. We then analyze
the losses in self-field in wires carrying AC current only.
Multi- and monofilament wires are analyzed in sections 3 and
4, respectively. The same wires carrying AC current super-
imposed on a 40 A DC current are analyzed in section 5. In
section 6 we analyze the losses of wires placed in external AC
magnetic field. Finally, in section 7 we summarize the
insights learnt from our simulations.

2. Model details

Two different topologies of a typical round wire with super-
conducting filament(s) have been compared in terms of their AC
losses. Both wires have an outer diameter of 1.3 mm and they are
composed of either a monofilament or 36-filaments, surrounded
by either magnetic Monel or a nonmagnetic sheath. The radius of
the monofilament is 0.276 mm and each of the 36 filaments has a
radius of 0.046 mm, resulting in the same total superconducting

cross section area of 0.15 mmz, 18% of the total wire cross
section. The wires were simulated under two different scenarios.
First, the wire is in a self-field state, carrying either AC current or
DC with superimposed AC currents. The AC current of 8 A
was chosen to be within the range used in previous experiments
[13, 14], while convenient and sufficient for modelling yet far
from the critical current. This case is representative of cables and
current leads in general use. The second scenario represents the
case where the modelled wire is part of a coil. Every winding of
the coil experiences a transverse magnetic field produced by the
coil itself. To mimic these conditions without simulating the
whole coil, the wire is placed in an external magnetic field
generated by an additional solenoid. The transverse magnetic
field produced by the solenoid is in phase with the current in the
modelled wire, exactly as if the wire was part of the coil. In this
case, the transverse magnetic field breaks the circular symmetry
of the self-field state and leads to a totally different loss profile.
The DC bias current used in both cases is either zero or 40 A. It
was experimentally proven [13] that this current is enough to
saturate the Monel and reduce dramatically the effects related to
the magnetic properties of the Monel.

The finite element models of the wires, based on
H-formulation [21], have been built with commercially
available software package COMSOL Multiphysics. The
electrical behavior of the superconducting material is descri-
bed by the E-J power law [22]. The sheath material resistivity
used for the simulation is the measured resistivity of Monel at
10K, 3.65 x 107" Qm". For the magnetic matrix we take a
field-dependent permeability p, = 1 + ¢;(1 — e # /ey /H)
with G = 155 600 m A! and C, = 905 m A ! and H, in units
of A m’, is the magnetic field. The nonmagnetic material is
represented by ;. = 1.

The wires are modelled as infinitely long in 2D space,
assuming fully coupled filaments (without twist pitch). The
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Table 1. Model parameters.

Critical current density 5x 108Am™

n-Value 30
1

Characteristic voltage, £, 1 uVem™

Wire diameter 1.3 mm

Wire length 60 mm

Number of filaments 1, 36

MgB, fraction 18%

Frequencies, f 50, 200, 800, 3200, 12 800 Hz
AC current amplitude 8 A RMS

DC current 0,40 A

multifilamentary wire has 18 filaments on its outer layer. In
self-field and relatively small current amplitudes, the current
does not fully penetrate the outer layer of the filaments and
uncoupled and coupled filaments behave similarly. To save
computational time, only 1/18 of the wire was calculated
with applied periodic boundary conditions on the sector
boundaries, as shown in figure 1. Thus, in the multi-
filamentary wire, only the outer layer of filaments was
modelled. The inner layers are totally screened from magnetic
field and currents. This approach holds only for the self-field
scenario. When the wire is in external field, the model makes
use of the two-fold symmetry, namely 1/2 of the wire was
computed (figure 1).

In self-field and zero DC bias current, only two cycles of
the AC current are enough to reach the steady state behavior
of the losses. When DC current is added to the AC current, an
exponential decay of superconducting losses occurs because
of the initial DC current charging. In this case, at least 15
cycles are required to reach steady state waveforms. The
energy loss is calculated by both time and spatial integration
of J - E over superconducting and metallic domains inde-
pendently, during the last period of the AC current, namely

T

f ( f J- EdS)dt. The model parameters are presented in
0

table 1.

3. Self-field, multifilament

In this section, wires in self-field configuration are analyzed.
Figure 2 shows a dramatic influence of the Monel ferromagnetic
properties on the losses of the superconducting filament(s).

Losses in the superconducting filaments (figure 2(a)) is
shown to increase by a factor of approximately three. In both
cases, higher frequencies tend to reduce the losses. This is
because part of the current flows in the metallic sheath instead
of the filaments. This point is discussed further below.

The frequency dependence of the losses in the metallic
sheath is presented in figure 2(b). The main loss mechanism
in the metallic sheath of a superconducting wire is eddy
currents induced by alternating magnetic field. The high
magnetic permeability of the Monel is responsible for higher
magnetic flux dynamics, resulting in an increase in the losses
by about four orders of magnitude.

Figure 3 exhibits a momentary analysis of the multi-
filamentary wire simulated in self-field at the peak of 8 A
in a selected frequency of 200 Hz. Clearly, the presence of
magnetic material around the filament alters the magnetic flux
density distribution, not only in the magnetic material itself
but inside the superconducting filament as well. The scales in
figures 3(a) and (b) are adjusted to the intensity of the
magnetic field to have a better visualization of the effect. The
magnetic sheath serves as a ‘pole piece’ and concentrates the
magnetic flux on the outer edge of the filament, resulting in
higher flux dynamics. More flux enters the superconductor
through smaller areas where the total integration of the flux
time-derivative over filament volume is higher for the
magnetic sheath wire, hence the increased losses. Current
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Figure 4. Current density (red-blue color scale) in a representative outer filament and magnetic field (blue-white color scale) in the matrix for
(a) nonmagnetic sheath, (b) magnetic sheath. The figure describes the current and the field for 200 Hz at the current peak (8 A.ps)-
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density distribution in the filament is also affected by the
change in the surrounding magnetic profile. Like the magnetic
field, the current is also concentrated near the edge of the
filament (figure 4).

Figure 5 shows the total magnetic flux density integrated
over the filament cross section, at maximum current ampl-
itude of 8 A5 at 200 Hz, for both magnetic and nonmagnetic
sheaths. The Monel sheath forces ~70% more magnetic field
to penetrate the filaments in self-field. The magnetic field is
also more concentrated on the edge of the filament (figure 3).

These findings imply that local energy loss distribution
results in a more localized heating that can lead to a hot spot.
The presence of the magnetic sheath increases the filament
loss by a factor of ~2.8 inside the filament and the sheath loss
by a factor of ~10% All the magnetic flux in the model is
produced by the AC current in the wire, therefore if more flux

enters the filament more flux leaves it every cycle. Figure 6

shows the flux time-derivative, é f (%f”

the filaments. The current waveform is plotted in figure 6 in
orange for a better visualization and easier analysis. The
frequency of the flux time-derivative waveform is double the
current frequency, because the calculation considers absolute
value of flux, regardless of the direction. There is a small step-
like feature at every maximum of the current, where the flux
changes trend. Values of dB/dt are higher by ~70% in the
Monel wire and the waveform is less symmetric around the
zero line. This can probably be attributed to the nonlinear
nature of magnetic properties of the Monel.

The nonsinusoidal behavior of the dissipated power in
the magnetic sheath (figure 7(b)) originates from the non-
linear magnetic properties of the Monel. Each time the AC
current crosses zero, the magnetic field in the wire is very low

)ds, averaged over
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Figure 9. Loss distribution in filament of multifilamentary wire in self-field at # = 81 ms at A, at 200 Hz without DC bias. (a) Nonmagnetic
sheath, (b) magnetic sheath. The upper and lower scales refer to volumetric loss density and magnetic flux density respectively. The arrows

show magnetic flux direction.

and, as a result, the Monel has its highest permeability. At
these times, d//dr is maximal, inducing the highest eddy
currents in the Monel.

The time derivative flux in the sheath averaged over the
sheath area is depicted in figure 8. The magnetic properties of
the Monel increase the flux variation by two orders of mag-
nitude and the momentary losses by four orders of magnitude.

The energy loss density of the multifilamentary wire in
self-field at 200 Hz without DC current, at t = 81 ms, is
depicted in figure 9. At this point in time the losses are near
their maximum in the period. Here again, we see strong
evidence for the influence of the outer sheath on the losses
within the filaments. As expected, the loss density follows the
magnetic field penetration profile. Although the area where
most of the losses are concentrated is smaller for the magnetic
sheath wire, the peak value of the losses in this case is about

four times higher than for the nonmagnetic wire, resulting in
higher overall losses.

At high frequencies, part of the transport current flows in
the metallic section of the wire rather than in the super-
conducting filaments, even for the case of the nonmagnetic
sheath. This happens in every conductor due to skin effect.
The effect is amplified when magnetic Monel is being used
and/or as frequency increases. Figure 10 shows the dis-
tribution of current between the filaments and sheath, in both
scenarios, at 12.8 kHz. Apparently, for the Monel case, the
current in the Monel peaks near the point where the total
current in the wire crosses zero. At this point the Monel
permeability is the highest, resulting in a stronger skin effect.
With the increase in the total current, more of the Monel
section is being magnetically saturated, thus taking less cur-
rent. This change in the permeability of the Monel not only
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(b) Magnetic sheath.

increases the skin effect and shares more current with the
superconductor, but also increases flux dynamics and by
doing so increases eddy currents losses in the sheath. On the
other hand, sharing part of the current between Monel and the
superconductor reduces the current in the filaments hence the
superconducting losses. Also evident in figure 10(b) is a
phase shift between the filament and sheath currents. This is
an intrinsic property of induced currents since their source is
the time derivative of the magnetic field.

The sudden transition of the Monel between nonsaturated
and saturated states causes a very rapid flux change in the
filament (figure 12(b)). At the saturation point of the Monel,
which happens around = 0.5 x 10~*s, i.e. when the current
reaches 8 A, all the current flowing in the sheath
(figure 10(b)) is rapidly discharged, causing additional flux
penetration into the filament. This transient causes a loss spike

in the filament (figure 11(b)). This behavior is totally absent
with the nonmagnetic sheath (figure 11(a), figure 12(a)).

4. Self-field, monofilament

For the monofilament wire in self-field, the filament losses are
similar for the magnetic and nonmagnetic sheath wires
(figure 13(a)) except at the highest frequency (12.8 kHz). The
magnetic sheath increases the skin effect and causes more
current to flow in the sheath and less in the filament
(figure 13(b)). This current sharing phenomenon is even more
pronounced for the monofilamentary wire than for the mul-
tifilamentary wire described above. Here the filament is car-
rying less current. A possible explanation is that the radius of
the monofilament is smaller than the radius of the outer layer
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of filaments in multifilamentary wire. For the total wire dia-
meter this makes the sheath thicker around the filament. This
increases the current required for Monel saturation and
increases the skin effect even further. Hence the metallic
losses in monofilament are significantly higher than in mul-
tifilamentary wire for the same case (figure 14). The loss ratio
of the sheath losses between magnetic and nonmagnetic
sheaths remains the same for monofilamentary and multi-
filamentary wires.

5. DC bias

In this section we analyze the AC losses in the common case
where AC current is superimposed on DC current. Specifi-
cally, we select here 40 A DC and 8 A,,s AC currents, to

match the values in our previous experimental studies
[13, 14]. For this relatively low DC bias value the current
flows in the outer filament layer without fully penetrating the
filaments. The analysis of monofilamentary wire shows that
there is virtually no difference in filament loss between
magnetic and nonmagnetic metals surrounding the filament,
see triangles and circles in figure 15. As we show here, (see
the ‘x’ and asterisk markers in the figure) this is not the case
for a multifilamentary wire, where the filament losses are
significantly higher when the sheath is magnetic.

To further investigate this difference, we analyzed the
magnetic field distribution in the sheath. The magnetic field
generated by the DC current is insufficient to fully saturate the
Monel around the filaments. Instead, it creates areas with high
and low permeability. The distribution of the permeability of
the magnetic sheath in multifilamentary wire is shown in
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figure 16 for a temporary snapshot taken at the maximum
peak current value of 51.3 A (40A DC + 8 A,ys). The
division of superconducting material to filaments produces
gaps in between successive filaments where the magnetic field
is lower than at the far edge of the filaments, although the
outer layer of filaments is filled with superconducting current.
The concentration of magnetic field leads to higher d¢/dt
compared to filaments with nonmagnetic sheath. Significantly
higher DC currents can saturate the area around the outer
layer of filaments, but then the inner layer of filaments
experiences the same problem of nonsaturated Monel, how-
ever, with a smaller number of filaments. This can explain the
relatively slow reduction of losses with increasing DC cur-
rent [13].
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Figure 16. Distribution of the permeability in multifilamentary wire
with Monel sheath at peak current, i.e. 40 A DC + 8 A, 51.3 Ain
total (color code at left hand side) and distribution of the current
density inside the filaments (color code at right).
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Figure 17. Sheath loss versus frequency (J/cycle/m) at 8 A, with
40 A DC bias.

As seen in figure 17, the sheath losses in mono-
filamentary wire are very similar in both magnetic and non-
magnetic sheath materials when 40 A DC current is added to
8 Ams AC, and are higher than in the case of the multi-
filamentary wire. Since for mono- and multifilamentary wires
the superconducting cross section area and the diameter of the
wire are the same, the single filament of the monofilamentary
wire is constricted at the center of the wire. The amount of
sheath material around the filament region is thus larger,
hence the eddy currents loops are larger and, consequently,
the losses are larger.

6. External magnetic field

Most superconducting applications are coil-based. Inside a
coil, every single winding experiences the influence of the
other windings in the coil. From the point of view of a single
winding, the magnetic field it experiences is always
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transverse. The circular symmetry, as in the above discussed
cases, is no longer valid. This scenario is modelled to repre-
sent the losses inside a wire when it is part of a coil. To model
it, first we added a long solenoid of 10 windings around the
wire oriented to create transverse field on the wire. Each
winding of this additional solenoid carries the same DC and
AC currents as modelled for the stand-alone wire. The current
in this solenoid is in phase with the current in the modelled
wire itself. The infinite 2D model implies fully coupled fila-
ments. The selected coil geometry generates an external field
of 74mTA™". In this scenario, the alternating external
magnetic field induces current both in the superconductor and
in the sheath to expel the magnetic field.

As seen in figure 18, in the presence of external magnetic
field the difference in filament losses between magnetic and
nonmagnetic sheaths, for both zero DC and 40 A DC bias, is
smaller than in self-field (figure 15). Surprisingly, the lowest
loss values are obtained for the magnetic sheath wire without
DC bias (see hexagrams in figure 18(a)). These results are in
contrast to the self-field case (figure 2(a)), where the exact
same wire configuration model exhibited the highest loss
values. To explain this result, we note that the magnetic
Monel is shielding the magnetic field in the central part of the
wire and therefore currents flow in this area within the
superconducting filaments. In figure 19, a snapshot of such
wire at the peak AC current amplitude of 11.3 A at 200 Hz is
displayed. The right side of the wire carries positive critical
current while filaments on the left side carry negative current.
Due to lack of filament twisting the coupling between them is
very strong, thus transversal AC magnetic field induces infi-
nite current loops within the wire. In fact, most of the wire
current is screening current rather than transport. Both wires
with magnetic and nonmagnetic sheaths are subject to
developing such currents. This coupling current is responsible
for an increase of two orders of magnitude in filament losses
compared to the self-field case for both cases. The sheath
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Figure 19. Field and current distribution in a multifilamentary wire
with magnetic sheath in external field at peak AC current at 200 Hz,
zero DC bias. The color coding is depicted in the left and right scales
for the field and current, respectively.

losses, however, are higher because this shielding effect
induces higher currents in the sheath as well.

Figure 20 displays the same scenario as in figure 19, but
for a nonmagnetic sheath. As clearly seen in the figure, in this
case the magnetic field fully penetrates the wire. All filaments
take part in screening the AC flux variation of the external
field to the extent that in some filaments, at the center of the
wire, positive and negative currents coexist in the same fila-
ment. Since the matrix has low permeability, the flux time-
derivative is lower, thus screening currents and losses are
lower compared to the magnetic sheath case.

When DC current is added, the difference in super-
conducting filament loss diminishes (see orange hexagrams
and purple triangles in figure 18(a)) because the external field
is enough to partially saturate the Monel and thus reduces the
shielding effect of the Monel. This is also evident in the
sheath losses which become lower with 40 A DC current
(figure 18(b)).

At the zero AC current point one can see a trapped flux
between positive and negative currents in the filaments (red
and blue areas). This unique distribution of current causes the
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Figure 21. Field and current distribution in a multifilamentary wire
with magnetic sheath in external field at zero AC current, and 40 A
DC bias. The color coding is depicted in the left and right scales for
the field and current, respectively.

local field between the filaments to be even higher than the
applied external field (figure 21).

7. Summary and conclusions

Monofilamentary and multifilamentary wire topologies have
been modeled with FEM for AC losses in self-field and
external magnetic field.

Our results reveal the disadvantages of using a magnetic
sheath for superconducting wires exposed to high-frequency
switching, suggesting a need to redesign wires for applications
such as SMES. In self-field, the high magnetic permeability of
Monel alters the magnetic flux density distribution, both inside
the magnetic material itself and in the superconducting filament
(s). The magnetic sheath causes the magnetic field to con-
centrate at the edge of the outer filaments of multifilamentary
wire, resulting in an increase in the losses not only in the sheath
but also in the filaments. Although the area of the filament
where most of the loss occurs is smaller, the peak value of the
loss in this case is about four times higher than for the non-
magnetic wire, resulting in higher overall loss.

For the multifilamentary wire at frequencies above
~10°Hz, the eddy currents in the nonsaturated magnetic
sheath dominate the filament losses and become the most
significant heat source. These findings are in good agreement
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with results obtained experimentally [13, 14]. Upon
decreasing permeability due to saturation, the eddy currents
produced in the sheath decrease accordingly. In this case the
relative reduction of loss in the sheath is higher than measured
experimentally. This could be a result of magnetic hysteresis
in the Monel which was neglected in our analysis.

The skin effect leads to current sharing between super-
conducting filaments and the metallic sheath reducing the
losses in the filaments while dramatically increasing them in
the sheath. A very rapid flux change in the filament, which
generates momentary loss spikes, is caused by the transition
of Monel from nonsaturated to saturated states and vice versa.
Such localized dissipation might lead to hot spots in the wire
and reduce the overall stability of the system.

In the monofilament wire, there is no difference in fila-
ment losses between the cases of magnetic and nonmagnetic
sheaths. Due to the circular symmetry, the ‘pole piece’ effect
which concentrates the field in the filament edges is absent,
thus no increase in losses is observed in the superconductor.
The losses in the sheath are much higher as expected in the
case of magnetic Monel.

In the external magnetic field, the Monel partially shields
the filaments, reducing the losses in them when no DC bias is
applied. However, in this case the eddy currents losses in the
sheath are increased. With DC current the external magnetic
field deeply saturates the Monel resulting in quite similar
behavior of losses in the filaments surrounded by either
magnetic or nonmagnetic metal.

At low frequencies, due to strong filament coupling, the
filament losses dominate in most cases where external field is
applied. At high frequencies, sheath losses are similar or higher
than filament losses. When the Monel is not magnetically
saturated, it becomes the dominant source of AC losses. While
in almost every superconducting coil the magnetic field is high
enough to saturate the Monel, there will always be an area in the
center of the coil where the field is very small. This area may
behave as an undesired heat source, adding to the disadvantages
of using a magnetic sheath in applications such as SMES, where
the wires are exposed to AC current ripples.
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Abstract

Superconducting wires designed for high current applications have a complex structure.
They are made of thin filaments. Each filament is surrounded by a layer that protects
against diffusion of oxygen into it. All the filaments are twisted and embedded together
in a metal sheath that provides the wire with mechanical strength. These wires are used
in preparing coils in which the superconductor current creates a magnetic field. The
magnetic field is used in various applications such as energy storage and transfer or
limiting short currents. In all high-current power applications, the superconductor is
exposed to unique working conditions that cause losses and, as a result, heating that

could compromise the performance of the device.

The characterization of losses in these wires is a scientific and technological challenge.
The contribution to losses comes from each of the wire components described above. For
each temperature, current, field, amplitude and frequency there is a dominant
contribution to another component and / or another mechanism of the losses. Given this
rationale, characterization and understanding of the contribution of each component and
mechanism is critical and has a very important impact on the future design of

superconducting devices.

This work addresses the challenge in two parallel ways: by developing a unique
experimental system that enables direct measurement of the losses under the required
special conditions and by simulations that shed light on the microscopic behavior of each
of the components of the wire separately. The research focused on working conditions
that mimic a situation in which high DC current flows in a wire or coil, with superimposed
high frequency AC current component caused by charging and discharging the coil or wire
by fast switching. Such working conditions are characteristic of electromagnetic energy
storage devices (SMES) that are currently being developed worldwide. The work
described here complements missing knowledge in the scientific literature, both in the
experimental aspect and in the understanding of the conduct and performance of

superconducting wires.



The unique experimental system, the first of its kind in the world, was constructed in the
framework of this work to measure losses in wires and coils, and under conditions of high
current and high-frequency currents. In addition, the cooling system is based on the use
of cryocoolers rather than cryogenic liquids to allow measurements in a situation as
similar to modern high-current devices based on superconductors. Measurements
focused on MgB; wires received through collaborations with leading wire manufacturers
worldwide. Wires with different geometries, filament number, magnetic and non-
magnetic sheaths were studied. The results of the measurement combined with extensive
simulations exploiting COMSOL Multiphysics to model the wire, showed that the
magnetic sheath has a dominant contribution to losses and has a significant effect on the
distribution of current and losses within the superconducting filaments by its effect on
the distribution of the magnetic field around and within the filament. The effect of the
sheath decreases as it approaches magnetic saturation. Simulations for a coil in which
each winding also experiences the magnetic field produced by neighboring windings
showed that in this case the twisting of the wires and the coupling of the filaments plays
critical role in their use for applications. The distribution of the field in the coil is not
homogeneous and will always create areas in which a wire sheath made of magnetic
materials will contribute locally to the losses and may endanger the whole coil if not

treated properly.

The research presented here is a necessary step in the development of superconducting
devices for high current applications and enables the production of advanced wires for
specific use, correct coil design with minimal losses and optimized dissipation of the losses
so that superconducting-based high current devices can be implemented with conduction

cooling technique almost completely maintenance free.
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