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ABSTRACT

This work describes a study of fluxoid quantization effects in a novel type
of superconducting network, consisting of two interlaced sub-networks of
small and large loops. The motivation for designing such a network was to
create an array of decoupled small loops that behave like isolated single
loops. We fabricated such 'double' networks from atomically smooth
Molecular Beam Epitaxilly grown LaigsSro16CuQ4 films. High resolution
electron-beam lithography was used to prepare a pattern of thousands of
loops made of ~30 nanometer-wide wires with a loop side of down to 75 nm,
the smallest high-temperature superconducting loops prepared to date.

Our theoretical study, based on computer simulations and mean-field
calculations, showed different behavior for the sub-networks of the large and
small loops in the double network. In particular, while the occupation of the
large loops by fluxons grows linearly with the external magnetic field, the
occupation of the small loops grows in steps, similar to the occupation of a
single loop. Furthermore, the calculations showed that the field dependent
energy of the sub-network of small loops is similar to that of an isolated single
loop. We observed features characterizing single loops also experimentally, in

measurements of the magnetoresistance of Lay.g4Sro.16CuO4 double networks.

The magnetoresistance measurements revealed periodic oscillations with

a periodicity corresponding to magnetic flux quanta,®,=hc/2e(h is the

Planck constant, ¢ is the speed of light in a vacuum and e is the electron's
charge), as in the Little-Parks effect. However, the amplitude of the
oscillations was found to be larger by almost two orders of magnitude than the
amplitude expected from the Little-Parks effect. Moreover, the temperature
dependence of the oscillations' amplitude was at variance with the Little-Parks
predictions. We, therefore, proposed a new model for these oscillations.

The essence of our model is that the resistance results from thermally
activated hopping of vortices across the loops, and the oscillations of the
resistance are caused by periodic changes in the activation energy required

for a vortex hopping. The periodic changes in the activation energy result from



the interaction of vortices with fluxoid currents in the loop, which are periodic
functions of the magnetic field. We found an excellent agreement between the
experimental results and the theoretical predictions of our dynamic model for
both the oscillations' amplitude and its temperature dependence.

To explain the monotonically increasing background on which the
magnetoresistance oscillations are superimposed, we extended the dynamic
model to include the interaction of vortices and antivortices with the external
field. A good fit between the theoretical predictions and the measured
background was found, revealing the existence of both vortices and
antivortices with comparable probabilities near the transition temperature.
This finding is consistent with the occurrence of Berezinskii-Kosterlitz-
Thouless transition in Lai.g4Sro.16CuQO4 films.

Double networks comprising nano-loops of high-7. superconducting
materials, can serve as an effective tool in the search for the recently

predicted @,/2=hc/4e and 2®,=hc/e flux periodicities in both striped

superconductors and in superconductors with d -wave symmetry of the wave
function of Cooper pairs, respectively. These networks offer large
magnetoresistance oscillations and a large signal to noise ratio. Efforts to
discover such periodicities should continue by extending this work to higher
and lower doping across the entire phase diagram, in Las.SrCuQO4 and
Las.xBaxCuO4 nanoloops.



1 INTRODUCTION

1.1 FLUXOID QUANTIZATION AND EARLY EXPERIMENTAL OBSERVATIONS OF
MAGNETORESISTANCE OSCILLATIONS IN MULTIPLY CONNECTED LOW

TEMPERATURE SUPERCONDUCTORS

Fritz London introduced the concept of fluxoid in multiply connected

superconductors as a sum of total magnetic flux, @, through the

superconductor and an integral of the supercurrent, J , around an opening (a

hole) in the superconductor [1]:

®'=®+(4—”)§/12f-d§, A
C

where ¢ is the speed of light, 4 is the magnetic field penetration depth [1,2]
and ds is the infinitesimal element of a path around the opening in the
superconductor. London showed that the fluxoid may have only discrete
values, and is quantized in units of superconducting flux quantum, ®@,:

hc (2)

O'=nd®,=n—
2e

where n is integer, h is the Planck constant, ¢ is the speed of light and 2e¢ is

the charge of a pair of electrons (Cooper pair).

In transport measurements, the resistance is typically detected near
the critical temperature of a superconductor. Therefore, the screening of the
external magnetic field is very weak, and the total flux @ through the
superconductor approximately equals the externally applied magnetic flux

®_. Using this assumption, with Eq. (1) and (2), we may express the

supercurrent surrounding a hole in a ring-shaped superconductor (see Figure
1) as

cD, O
= > (n— a
ArAL D,

(3)

),

where L=2m is the loop circumference, and r is the loops radius. The

integer number, », called the winding number, counts fluxons inside the



superconducting loop. This term is used to describe the magnetic quasi-
particles associated with a circulating current, and a flux enclosed by this

current.

Due to the induced supercurrent, the energy of the superconducting
loops will acquire a shift proportional to the kinetic energy of the circulating
Cooper pairs, which is proportional to the square of the supercurrent

(4)

B Az’

2
c

E, J2.

At the lowest energy level, the number of fluxons changes in a
stepwise form as shown in Figure 1a. According to Eqg. (3), the current will
change periodically with the magnetic flux (see Figure 1b). And, as defined in
Eq. (4), the energy proportional to the squared current has magnetic flux

dependence in the form of multiple parabolas replicated with periodicity of @,

(see Figure 1c).

In the square network of loops, the fluxoid quantization (Eq. (1)) has to
be satisfied for every loop: in each cell there may be a different number of
vortices, n, and a different current in every side of every loop. Solving the set
of fluxoid equations together with the requirement for minimal energy, shows
[3-6] that the number of vortices in the network grows linearly with the field —
completely different from the stepwise population of a single loop.

We show in this work that in contrast to the square network, in the
specially designed double network consisting of two interlaced sub-networks
of small and large loops (introduced in Section 2), the small loops are
occupied by fluxons in steps, closely resembling the behavior a single loop.
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Figure 1. Population of fluxons (a), supercurrent (b), and kinetic energy of the
supercurrent (c) in a superconducting loop (left schematic drawing), as a function of

magnetic flux piercing the loop, expressed in units of the flux quantum.

The additional energy, E,, of the fluxoid currents defined in Eq. (4) will
suppress periodically the critical temperature, 7., of a superconducting. This

effect was first observed experimentally by Little and Parks [7-9]. They
demonstrated that a thin-walled superconducting tin cylinder pierced by a

magnetic flux shows magnetoresistance oscillations with the period equal to

the superconducting flux quantum @, =hc/2e (see the left panel of Figure 2).
Little and Parks associated the resistance oscillations AR(H) with periodic
changes AT, (see the right panel of Figure 2) in the superconducting
transition temperature 7., AR = AT.(dR/dT). The amplitude of the oscillations,

AT, scales with (&,/r)*, where &, is the zero-temperature coherence length,

and r is the radius of the cylinder.
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Figure 2. Left panel: Resistance of the tin cylinder as a function of magnetic flux.
Right panel: Schematic plot of resistance versus temperature: interpretation of

changes in the critical temperature reflected as changes in the resistance [7-9].

Fluxoid quantization effects were studied in many works on
microscopic and mesoscopic multiply connected structures made of
conventional superconductors: oscillatory behavior was observed in
resistance and magnetization of single loops [10-19], different types of
networks [3-5,20,21], arrays of Josephson junctions (see for example ref. [22-
24]), and more complex structures [25,26]. A review of all the works is far
beyond the scope of this thesis. Yet, as we show in the next section, only a
few works describe fluxoid quantization effects in loops made of high

temperature superconductors [27-29].



1.2 EXPERIMENTAL OBSERVATION OF MAGNETORESISTANCE OSCILLATIONS IN HIGH-

TEMPERATURE SUPERCONDUCTORS

In 1990, Gammel et al. [27] reported magnetoresistance oscillations in a
network of ~ 2 um square loops made of YBa,Cu3O7.5 (see image of the
network in Figure 3, left panel) and attributed these oscillations to the
oscillations in the critical temperature, i.e. the Little-Parks effect. However, the
amplitude of the oscillations and its temperature dependence in their

experiment could not be accounted for. As &, in high-7. superconductors is

relatively small (several nm), AT, o< T.(&,/r) is expected to be in the sub mK

range even for micron-size high temperature superconducting loops. The
Little-Parks magnetoresistance oscillations, AR =AT.(dR/dT), in high-T,
superconductors is, therefore, expected to be very small. Gammel et al.
observed much larger oscillations, as demonstrated in the right panel of in
Figure 3. In addition AT, depends on T, as shown in the left panel of Figure
3. This finding is also inconsistent with the expected constant amplitude of the
changes in the critical temperature in the Little-Parks effect. The large

amplitude and the temperature dependence of AT, remain open questions.

AT, (mK)

AT, (a.u.)

-100F

-120F

-40\l‘~20lI‘O ‘ZOKIK;O
T (K) H (Oe)

Figure 3. Left panel: Amplitude of the oscillations in the 'critical temperature’, as a

function of temperature measured in the YBCO square network, shown in the inset

(the scale bar is 20 um). Right panel: oscillations in the 'critical temperature' derived

from the measured magnetoresistance oscillations in the YBCO network, as a

function of the magnetic field [27].



The configuration of the square network in the work of Gammel et al.
exhibits an intrinsic disadvantage due to the fact that the squares share sides.
This configuration results in interactions between the loops [3-5,20,21], which
may complicate the analysis of the results. This problem may be solved by
fabricating single rings, as was recently demonstrated by Carillo et al. [29].
They performed magneto-transport measurements on submicron YBCO high
temperature superconducting single loops with an outer diameter of about 1
um (Figure 4a). The observed oscillations (Figure 4b) have an amplitude
larger than expected from the Little-Park effect (Figure 4c). However, the
frequency was difficult to define due to multiple frequencies present in the
oscillations (Figure 4d). The authors explained the large amplitude and multi-
frequency oscillations in terms of non-uniform vorticity: supercurrent density
varies in a radial direction forming concentric domains with a separation of ~

30 nm within the ring arms.

(b) (c)

(d)

Figure 4. (a) An example of a single ring of YBCO measured by Carillo et al.; (b)
oscillations in the magnetoresistance measured at 70 K in YBCO single ring; (c)
oscillations in the critical temperature derived from the magnetoresistance; (d)
Fourier transform showing the multiple 'frequencies' of the oscillations in the

magnetoresistance [29].

Although a single loop configuration used in the above experiment has
advantages over a square network, such as simplicity in the analysis, the
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single loop configuration presents significant disadvantages: in a single ring,
the signal-to-noise ratio is typically low; variations from loop to loop may
introduce a need for the statistical measurement of a large number of single
loops, which may be impractical. Therefore, in some cases the single loop
geometry may not be the optimal choice.

In this work, we exploit the advantages of the two approaches, networks
and single loops, by fabricating a specially designed double network,
overcoming the disadvantages of each of the two approaches: in this network,
the loops behave similarly to an ensemble of independent loops, making the
system simple to analyze; measuring many loops in the network averages
over a sample inhomogeneity and significantly increases the signal-to-noise

ratio.

The open questions, mentioned above in the context of the work by
Gammel et al., partially motivated the current study. We show here that both
the amplitude and the temperature dependence can be accounted for in a
dynamic model. This model takes into account the hopping of Abrikosov
vortices/anti-vortices into or out of loops, while taking into account the
interaction of these Abrikosov vortices with fluxoid currents circulating around

loop.

The periodicity of the oscillations is an additional characteristic of the
behavior of superconducting loops that is important for the analysis of wave
function symmetry and mechanisms of superconductivity. Several recent
theoretical works have predicted unusual, exotic fluxoid periodicities in high
temperature superconducting nanoloops, as described in the following

section.



1.3 THEORETICAL PREDICTIONS FOR HALF FLUX QUANTUM AND TWO FLUX QUANTA

PERIODICITIES

The nature of the pairing mechanism and the symmetry of the order
parameter are among the most important, yet unresolved issues in the field of
unconventional superconductivity [30,31]. The explanation of intriguing
phenomena such as a gap opening in the excitation spectra of electrons at
temperatures above the superconducting transition in these materials are
closely connected to these fundamental questions [32]. These issues were
mainly addressed in cuprates materials, but the newly discovered iron based
superconductors demonstrate that the nature of superconductivity at elevated
temperatures is probably even more complex [33]. The experimental studies
of superconducting properties are affected in many cases by artifacts arising
from experimental limitations such as surface quality, contact resistance, edge
roughness, and crystal quality. The magnetic fluxoid quantization in multiply

connected superconducting structures is robust, unaffected by such artifacts.

Several groups predicted recently that an 'exotic' flux periodicity with a
period of 2d, = hc /e Will emerge in nano-scale loops of superconductors with
d-wave symmetry and other unconventional superconductors with nodes
(zeros) in the energy gap [34-38]. These works show that at a magnetic flux
around @, -(2m+1), m is integer, there is a paramagnetic quasi-particle-like
contribution to the circulating current in a loop. This contribution enhances the
magnetic field, resulting in an energy gain and reconstruction of the
superconducting condensate. Consequently, the total energy and other

physical properties of the loop will possess periodicity of 2@, with a magnetic

flux. As seen Figure 5, the persistent current slope is larger at fluxes

around®,-(2m+1) than at fluxes around @, -(2m). Parabolas of the energy

which is roughly proportional to the square of the persistent current are

elevated at values of @,-(2m+1) (compare to the classical calculations
shown in Section 1.1, Figure 1). However, the 2@, periodicity is only a small

component on top of the dominant @, periodicity. The size of a loop must be



small for the effect to be clearly observed. In this work, we have been able to
fabricate and measure flux periodicity in the loops of ~ 35 nm in radius.

Figure 5. Energy and persistent current in a small loop of a hypothetical
superconductor with zeros in the energy gap, as a function of the magnetic flux

threading the loop [36].

Another theoretical prediction was made for flux periodicity of

®,/2=hcl/4e, in superconductors that exhibit striped form the order

parameter [39]. This work predicts that in loops formed from a striped
superconductor [40], the movement of Cooper pairs is dramatically
suppressed, due to the perpendicular orientation of stripes between the layers
of the superconductor. However, dislocations in the striped structure may
permit transfer of the charge 4e, leading to hc/4e=®,/2 periodicity. In this

work, we analyze the magnetoresistance of the nanoloops to search for
hc/4e and hele periodicities.

Another fundamental issue in the field of high temperature
superconductivity is the mechanism responsible for the transition to the



normal state. One of the possible scenarios is the Berezinskii-Kosterlitz-
Thouless (BKT) transition, that is addressed in the following section.

1.4 BEREZINSKII-KOSTERLITZ-THOULESS TRANSITION

The Berezinskii-Kosterlitz-Thouless (BKT) transition [41-43] is one of the
possible scenarios of the phase transition from the superconducting state to
the normal state in two-dimensional superconductors (thin film) [44,45]. In this
scenario, pairs of Abrikosov vortices and antivortices are created in the
superconductor [2]. At low temperatures, vortex and antivortex bind in a pair
by an electromagnetic attractive force. At these low temperatures, the external
current cannot move a pair as the net Lorenz force applied on the pair is zero.
Therefore, no energy dissipation and zero resistance are observed at these
temperatures. However, at some higher temperatures, the thermal energy,

k,T , becomes higher than the binding energy of the pairs leading to the

unbinding of a vortex and an antivortex. At these temperatures, the external
current can move the vortex in one direction, and the antivortex in an opposite
direction, leading to energy dissipation detected as a resistance. According to

this picture, the critical temperature, T,

BKT ?

is the onset temperature of the

resistance of the superconductor.

The study of the BKT transition was the topic of a large number of works
in thin superconducting films. However, controversial experimental data and
its interpretation can be found in the literature, in particular in measurements
of the layered cuprates, which may be considered as a system of quasi two-
dimensional layers [46-50].

The BKT mechanism is predicted for 2D systems. In this work, we study
the relevance of the BKT model to nanowires forming networks in thin films of
La1.s4Sro.16CuO4 high-temperature superconductors. We argue that in order to
explain the field dependence of the magnetoresistance we have to account for
both vortices and antivortices spontaneously created in the wires. The
presence of the vortices and antivortices in the nanowires is consistent with

the assumptions of the BKT transition.
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2 EXPERIMENTAL

We pattern networks of nanoloops in high quality LaygsSro.16CuQOg4 films
grown by Molecular Beam Expitaxy. First, we create a mask of a network in
the layer of an electron beam resist using a high resolution electron beam
writer. We then etch the uncovered areas of the film with Ar-ion milling. The
entire structure, including the network and the contacts, is made of a single
piece of LaigsSro16CuO4 to avoid high contact resistance. The network
resistance is then measured using a four-contact method in the cryogenic

system for transport measurement.

In this work, we introduce two types of superconducting networks: a
conventional square network (see Figure 6, left panel); and the newly
designed double network made by placing small loops in every vertex of a
square network (see Figure 6, right panel). Unlike the square network, the
small loops in the double network do not share sides and are therefore
decoupled. In a later chapter (Section 3.1), we confirm theoretically the
decoupling nature of the network. This network combines the advantages of
both a single loop and of a square network (high signal to noise ratio, higher

critical current, and averaging over sample inhomogeneities).

simple square network with a unit cell size of 150 nm. Right panel shows a typical

SEM image of a double network consisting of two interlacing networks of large loops

of 500 nm, and small loops of 150 nm.
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2.1 FABRICATION OF LA;xSRCUO4 FILMS - MOLECULAR BEAM EPITAXY (MBE)

The high quality Laig4Sro.16CuQO4 films used in this study were grown at
Brokhaven National Laboratory (BNL), in the group of Ivan BoZovi¢, using a
Molecular Beam Epitaxy (MBE) machine. MBE film deposition is performed in
ultra high vacuum (<10™® Pa). The slow deposition rate allows the films to
grow one atomic layer after another in a controllable way. Ultra-pure elements
(La, Sr, Cu) are heated in separate cells until they begin to slowly evaporate
(after melting or by sublimation). The gaseous elements then condense on the

wafer, where they produce a layer of the desired compound.

Figure 7. Molecular Beam Epitaxy chamber at BNL (Adapted from the Brookhaven

Oxide MBE group website.).

The main tool at BNL is a unique multi-chamber Molecular Beam Epitaxy
(MBE) system (Figure 7) for the synthesis of complex oxides with atomic-layer
precision. The MBE growth chamber consists of the following parts: (i) ultra-
high vacuum chamber with two 1,000 I/s turbo-molecular pumps and 24
differential 70 I/s pumps; (ii) sample transfer mechanism to introduce samples
from the air into the MBE chamber without venting the MBE; the main
chamber includes an introduction chamber, a transfer chamber, and vacuum
controls; (iii) a sample manipulator with 6 degrees of freedom, motorized and
computer-controlled; the manipulator carries a sample heater with 4

individually controlled quartz lamps capable of heating the substrate to 750°C;
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(iv) pure ozone generation, collection, and a delivery system; (v) sixteen
evaporation sources with individual pumping stations, gate valves, and fast-
acting shutters; (vi) a unique 16-channel atomic absorption spectroscopy
(AAS) system for monitoring source rates in real time; (vii) a quartz-crystal
oscillator monitor (QCM), mounted on a separate manipulator with 3
translation degrees of freedom, motorized, and computer controlled; (viii)
scanning reflection high-energy electron diffraction (RHEED); (ix) a time-of-
flight ion scattering and recoil spectroscopy (TOF-ISARS) system for real-time
chemical analysis of the film surface; (x) an automatic operation control
system that operates vacuum valves, roughening and turbo-molecular pumps,
all motorized motions, the pneumatic shutters, and power supplies for thermal

evaporation sources, substrate heater lamps, and the ozone source.

The second major vacuum chamber is devoted to in-situ pre-lithographic
processing, including ion-beam etching and electron-beam deposition of
metallization and insulation layers. This chamber is equipped with an lon Tech
2-inch ion source, a 5-source Thermionics electron-beam evaporator, and an
Oxford Applied Research atomic oxygen source. This chamber is installed in
the clean room, so that substrates can be prepared in a class-100 clean

environment, and loaded into the system without surface contamination.

The growth and processing chambers are connected via a transfer
chamber, which has load-locks on both ends, supplied with quartz lamps for
fast outgassing of substrates when they are first introduced into the vacuum
system. Loading can be accomplished within minutes. The transport chamber
is also equipped with ion pumps and Ti-sublimation pumps, and has been
tested to maintain vacuum down to 10" Torr. The transport chamber can be
used for storage of 18 substrate holders, 3” each.

For the determination of the crystallographic structure of films, the MBE
group has a PANalytical Xpert Pro X-ray diffractometer (XRD). This
instrument is a high-resolution (down to 5 arcsec) 4-circle goniometer which
enables the study of in-plane and out-of-plane lattice constants, pole figures,
rocking curves, and grazing-angle reflectance. We also used a Nanoscope-Il|

Atomic Force Microscope (AFM) for surface characterization.
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2.2 NANO-PATTERNING

A high resolution electron beam (e-beam) lithography system was
exploited for nano-patterning the films. The e-beam system installed at the
Bar-llan Institute of Nanotechnology and Advanced Materials is the
CRESTEC-9500C (Figure 8). The electron beam lithography is based on
'writing' with a focused electron beam in a thin layer of a material sensitive to
the accelerated electrons (electron beam resist). The main advantage of
electron beam lithography is that it is a very effective way to go beyond the
diffraction limit of light and make features of few tens of nanometers or even
less. In some cases, the exposed parts of the resist become highly soluble
and can be removed by liquid developers (positive tone resists). In other
cases, the exposed parts of the resist become unsolvable and the un-exposed
parts can be removed by developers (negative tone resists).

Figure 8. CRESTEC CABLE 9000 high resolution Electron Beam Lithography system at
Bar-llan Institute of Nanotechnology and Advanced Materials (Adapted from

CRESTEC website.).

We used Poly(methyl methacrylate) (PMMA) as a negative tone resist.
Although, in typical conditions PMMA functions as a positive resist, at
increased exposure times PMMA may crosslink and become unsolvable in
typical organic developers [51]. We observed that a cross-linked negative
tone PMMA ensures a much higher contrast, resolution, and aspect ratio. In a
layer of ~180 nm, we could reach an aspect ratio (width/height) of up to 1/10
in features down to 16 nm. Generally in thinner layers of PMMA, one can
reach a resolution below 10 nm. Cross-linked PMMA are also very stable
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during ion milling, probably due to the enhanced stiffness of the crosslinked

polymer.

Nanopatterning steps are described schematically in Figure 9. A layer of
poly(methyl methacrylate) (PMMA) resist was spun-off on top of a
Lai.s4Sro.16CuO4 film (step 1). We used PMMA with a molecular weight of
495,000 (Microchem PMMA 495 A11) diluted further with anisole
(approximately 50:50 volume ratio) to produce a film of ~180 nm after spin-
coating at the speed of 4,000 RPM. The sample with the resist layer was
'baked' on a hot plate for 1.5 min at 100 - 180 C°. Then the desired patterns of
the networks were exposed using a CRESTEC Cable-9000C high resolution
e-beam lithography system with an acceleration voltage of 50 KeV and typical
beam current of 1 nA (step 2). We used relatively high doses of electron beam
exposure to produce a negative tone image of the network in the layer of
PMMA. The exposure time was about one to two orders of magnitude higher
than the time for the positive regime of the PMMA resist (step 3). The
standard developer, based on MIBK (methyl isobutyl ketone), was then used
to remove parts of the resist near the negative unsolvable (cross-linked) parts
of the PMMA (step 4). This 'negative' PMMA pattern served as a mask for
transferring the pattern to the superconducting film by Ar-ion milling, with
energies of 1.5 — 3.5 KeV, and currents of 20 — 120 uA (steps 5 and 6).
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2. E-beam writing

3. Cross-linked PMMA pattern 4. After development

[[LLLLL =

5. Ar-ion milling 6. Final pattern

Figure 9. Main nanopatterning steps: (1) spin-coating of the sample with a PMMA
resist; (2) electron beam writing in the CRESTEC CABL 9000 system; (3) cross-linked
pattern in the layer of PMMA; (4) PMMA mask on top of the superconducting film
after development; (5) pattern transfer with Ar ion milling; (6) resulting pattern of

the network in the superconducting film.
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2.3 MAGNETO-TRANSPORT MEASUREMENTS

The magnetoresistance of the superconducting networks was measured
in a Quantum Design Physical Property Measurement System (PPMS®)
(Figure 10). Sample environment controls include fields up to £ 9 Tesla and a
temperature range of 1.9 - 400 K.

Figure 10. Quantum Design Physical Property Measurement System (PPMS®)
installed at the Bar-llan Institute of Nanotechnology and Advanced Materials

(Adapted from the Quantum Design website.).
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3 RESULTS

The details of this work are described in the following papers:

[. I. Sochnikov, A. Shaulov, Y. Yeshurun, G. Logvenov and |. Bozovic,
"Large oscillations of the magnetoresistance in nano-patterned high-
temperature superconducting films", Nature Nanotechnology 5, 516 -
519 (2010).

[I. 1. Sochnikov, A. Shaulov, Y. Yeshurun, G. Logvenov and |. Bozovic,

"Oscillatory magnetoresistance in nano-patterned superconducting
Lay.g4Sro.16CuQy4 films”, Physical Review B 82, 094513 (2010).

[ll. 1. Sochnikov, Y. Shokef, A. Shaulov, and Y. Yeshurun, "Single-loop like
energy oscillations and staircase vortex occupation in superconducting
double networks", submitted to Physical Review B (2011).

IV. I. Sochnikov, I. Bozovi¢, A. Shaulov and Y. Yeshurun, "Uncorrelated
behavior of fluxoids in superconducting double networks", unpublished.

As indicated in Section 2, our experiments focus on the specially
designed double network (Figure 6, right panel) composed of two interlaced
sub-networks of small and large loops. In Section 3.1 (paper Ill) we provide a
detailed theoretical analysis and computer simulations of the screening
current distribution, energy 'waveform' (i.e., energy vs. field) and vortex
occupation in the large and small loops of the double network. We show that
these two sub-networks exhibit remarkably different behavior. While the sub-
network of large loops behaves similarly to a conventional square network,
the behavior of the small loops resembles very closely the behavior of a single
loop. Thus, for example, the vortex occupation of the large loops increases
linearly with the field, whereas the small loops are occupied in steps. In
addition, the form of the energy as a function of magnetic field in the double
network is similar to the energy form of a single loop. These findings establish
theoretically the sub-network of the small loops as an ensemble of decoupled
loops.

To confirm experimentally these results, in Section 3.2 (papers V) we
compare magnetoresistnace oscillations measured in a conventional square
network with loop size of 150 nm, and a double network of 150 nm small and

500 nm large loops made of LajgaSro16CuQ4. In the square network, we
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observe oscillations with features indicative of collective behavior of the loops,
e.g. finite slope dR/dH at H =0, downward cusps and pronounced

secondary dips at half integer values of ®/®,. In the double network, we

observed dichotomic fluxoid quantization effects: The sub-network of the large
loops behaves as regular periodic network, exhibiting correlated behavior of
the fluxoids. In contrast, the sub-network of the small square loops exhibits a
single-loop-like  behavior. This experimental observation indicates
uncorrelated arrangements of fluxoids in the sub-network of the small loops in
the double network, confirming the theoretical predictions mentioned above.

In Sections 3.3 (paper |) we present magnetoresistance measurements in
double networks of LajgsSro.16CuQ4 with small loops as low as 75 nm. We
observe magnetoresistance oscillations corresponding to the small loops with
flux periodicity of hc/2e. It is tempting to interpret these oscillations as the
Little-Parks effect, reflecting oscillations with the field in the transition

temperature T,. However, the amplitude of these oscillations is two orders of

magnitude larger than the amplitude expected from the Little-Parks effect. We
therefore proposed a new model for this large effect based on fluxoid
dynamics. This model provides a good quantitative description of the
oscillations amplitude and its temperature dependence. We also show that,
due to the magnitude of the effect, the double network may serve as an
effective tool in search of hc/e and hc/4e fluxoid periodicities in

superconducting nanoloops.

In Section 3.4 (paper Il) we further extend the fluxoid dynamics model to
include the interaction between the external field and the magnetic moment of
the vortices and antivortices. The extended model accounts quantitatively for
the measured monotonic background on which the magnetoresistance
oscillations are superimposed. Moreover, an analysis of the background within
this model indicates that in the patterned film both vortices and antivortices are
present. This finding is consistent with the superconducting phase transition
scenario proposed by Berezinskii, Kosterlitz and Thouless [41-45].
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3.1 SINGLE-LOOP LIKE ENERGY OSCILLATIONS AND STAIRCASE VORTEX OCCUPATION
IN SUPERCONDUCTING DOUBLE NETWORKS
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Single-loop like energy oscillations and staircase vortex occupation in
superconducting double networks

l. Sochnikov', Y. Shokef?, A. Shaulov', and Y. Yeshurun'

" Department of Physics, Institute of Superconductivity and Institute of Nanotechnology and
Advanced Materials, Bar-llan University, Ramat-Gan 52900, Israel

2 Department of Materials and Interfaces, Weizmann Institute of Science,
Rehovot 76100, Israel

The magnetic-field dependence of the energy and vortex occupation is calculated for the
recently realized superconducting double network consisting of two interlaced sub-
networks of small and large loops. Two different approaches are employed, both based
on the J>model: Mean-field analysis that minimizes the network energy assuming
random vortex configurations, and numerical simulations in which energy is minimized
avoiding this assumption. In the mean-field analysis the vortex population in both sub-
networks increases linearly with applied field. In contrast, the simulations show that while
the population of the large loops increases linearly with field, the occupation of the small
loops grows in steps, resembling the behavior of an ensemble of decoupled loops. This
decoupling is also reflected in the waveform of the energy versus applied field. A modified
mean-field analysis which introduces decoupling between the small loops yields results in
excellent agreement with the simulations. These findings suggest that the behavior of a
single loop is reflected in the double network, and thus constitute it as a favorable system

for the experimental study of quantization effects in superconducting loops.

PACS numbers: 74.81.Fa; 74.78.Na; 74.25.Uv; 75.75.-c

Introduction

In the early days of
superconductivity London predicted that
the fluxoid ', defined as the sum of the
magnetic flux and a term involving the
persistent current, is quantized in a multiply
connected superconductor in units of
¢, =hc/2e. For a single superconducting

loop, the fluxoid quantization, together with
the requirement for energy minimization,
dictates periodic changes in the screening
current density J and  step-wise
occupation of the loop with flux quanta.
The energy, being proportional to J?, is
also periodic with the magnetic field, giving
rise to periodic changes in the critical
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temperature, 7., as demonstrated by Little
and Parks 2.

Similar to a single superconducting
loop, two-dimensional periodic networks of
superconducting loops also  exhibit
magnetoresistance oscillations with field
periodicity ¢,/ A, where A corresponds to

the area of each loop in the network >''.
Analyses of the current distribution and the
energy vs. magnetic field in such networks
are usually based on the J>-model '*'*
assuming current conservation in each
node and that the average field for the
entire network is equal to the externally
applied field "7



Recently, we fabricated a novel type
of superconducting network '® ' made by
connecting the vertexes of small square
loops with relatively long wires, forming two
interlaced sub-networks of small and large
loops, see Figure 1a. The motivation for
designing such a network was to create an
array of decoupled small loops that behave
like isolated loops. Here we analyze this
unique network employing two theoretical
approaches both based on the J*-model ,
one is the mean-field approach that
minimizes the network energy assuming
random vortex configurations, and the
second is based on numerical simulations
in which energy is minimized avoiding this
assumption. We first demonstrate these
two approaches in the analysis of a simple
square lattice (Figure 1b). Although in this
case both methods yield similar results for
the periodicity and the occupation rate, the
numerical simulations show additional local
minima at normalized fields 0.5+m, with

integer m, corresponding to the
checkerboard configuration studied
previously % & % 2 More dramatic

differences between the two approaches
are manifested in the analysis of the double
network (Figure 1a). While in the naive
mean-field analysis the vortex population in
both sub-lattices of small and large loops
increases linearly with the applied field, the
numerical simulations show that the
occupation of the small loops grows in
steps, resembling the behavior of an
ensemble of nearly decoupled loops.
However, we show that a modified mean-
field analysis which includes decoupling
between the small loops reproduces the
staircase vortex occupation and the energy
waveform obtained in the simulations.
Finally, we point to the advantage of the
numerical simulations in providing the
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actual spatial distribution of the vortices in
the double network, demonstrating visually
the different occupation of the large and
small loops at various magnetic fields.
These results will guide future experimental
efforts to measure vortex occupations in
such complex networks.

(a)
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Figure 1. Schematic diagram of (a) the double
network, and (b) the simple square network.

Square network

We consider a  network  of
M x M square loops, each of side L, in an
external magnetic field H, see Figure 1b.
The fluxoid quantization " ?' requires that
the integral over the currents around each
loop is balanced by the flux quanta in the
loop and the external magnetic flux. Thus,



ZLJM =N, ¢, - HL, (5)
5

where 6=0,1, 2,3 indexes the edges of the
square loop a=0,1.M>—1, carrying a

screening current J,,, and N, is the

number of vortices in the loop « .

The energy is given by the sum of
J* over all the network wires:

M1 (6)
E= )Y LU, +J5),
a=0

where two sides in each loop are
considered and the summation over all
loops ensures that each wire in the
network is accounted for. Egs. (5) and (6)
are the basis for both the mean field and
the numerical simulation approaches. In
writing these equations we adopted the
assumptions of the J* model '*'*, namely
that the magnetic penetration length is
much larger than the wires width and the
screening currents are therefore very
small. These currents produce magnetic
fields which are perturbations on the
applied field and are therefore neglected.
This model also neglects the geometric
inductance % #® and the additional energy
from the induced currents interacting with
the applied field as compared to the kinetic
energy. Notably, the model assumption on
the screening length is well satisfied in our
experiments & 1°.

Mean field solution

We assume that a fraction F of the
square loops have N +1 vortices and the
remaining 1-F have N. Therefore, the
total magnetic flux through the system is

N, [F(N+1)+(1-F)Nl¢, =HN,L*, (7)
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where N, =M"’ is the number of loops in
the lattice. Thus

_HL (8)

N+ F

0

Since F is a fraction and N is an
integer, we may write

2
F:{HL } N

¢o
where {s} denotes the fractional part and

HI? (9)

%

3

lo| the integer part.

We refer to a loop carrying (N +1)
flux quanta as occupied and to one
carrying only N quanta as vacant. Each
edge in the network has two neighboring
loops, and in the mean-field approximation
the probability that both loops are occupied
is F*, that one is occupied and one is
vacant 2F(1- F), and that both are vacant

is (1-F)*>. Moreover, we will assume that

these three types of edges carry currents
J.., J,_,and J__, respectively. Hence, the

+— 1
average current in the system is

++

(J)=FJ_ +2F(1-F)J,_+(1-F)’J_. (10)
Eq. (5) for the occupied and vacant
loops takes the form,

4L[F], +(1-F)J, 1=(N+D¢,—HL = (11)
=(1_F)¢o .

4L[FJ, +(1-F)J__]=N¢,—HL =-F¢,

In writing Eq. (11), we assumed that for
each one of the four loops surrounding a
given loop, there is a probability F to be
occupied and probabilty 1-F to be
vacant. It is straightforward to verify from
Egs. (10) and (11) that the requirement



that the average current in the network
(J)=0 is automatically satisfied.

Eq.
form

(6), for the energy, takes the

E=2N,L[F*J? +2F(1-F)J> + (12)

+(1-F)*J* ]

We are interested in the minimal energy for
a given external field; therefore we seek
the current distribution in the system that
minimizes the energy given in Eq. (12). We
use the constraints of Eq. (11) to express

J,, and J__ in terms of J,_, then
substitute these in Eq. (12) and minimize
with respect to J, by requiring

OE/0J, =0. After some algebra this yields

E:NT—¢°2F(1—F). 13)
4L

The solid line in Figure 2 shows the
normalized energy per loop as a function of
the normalized external field. Note that the
energy waveform for the network is
inverted and shifted by a quarter of a
period relative to that of a single loop (see,
e.g., Figure 4.5 in Ref. #'). In addition, in
contrast to an isolated loop in which the
occupation grows in steps 2, in the square
network the occupation grows linearly with
the field, see Eq. (8).

This solution is valid as long as the
vortex distribution in the network is
disordered, namely that there are no
correlations between the occupations of
neighboring loops. It is instructive to see
how this breaks down for F =1/2, where
the minimum energy configuration is
known to be that of a checkerboard
arrangement of the vortices on the lattice.
For such a configuration, all edges have an
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occupied loop on one side and a vacant
loop on the other #* ?°, Eq. (11) should be
modified to have only contributions from
J,_ for both types of loops, which leads to

J, =¢,/8L). Similarly, Eq. (12) for the
energy should be modified to include only
a contribution from J’ , eventually leading

to E=N,¢;/(32L), denoted by the bold

circles in Figure 2, which is half of the
mean-field value of N.4 /(16L) obtained

by substituting F=1/2 in Eqg. (13). Also,
note that for the checkerboard
arrangement of vortices, Eq. (10) may no
longer be used, yet the total current still
vanishes. Here, the magnitude of the
current on all edges is equal, but their
directions alternate in space to achieve a
net current in one direction around the
occupied loops and in the opposite
direction around the vacant loops.

Mean-field, Eq. 9 —=— Simulation @ Checkerboard

0.06

2

; o/L)
o
o
=

E/N ¢
3

Figure 2. (Color online) Normalized energy per
loop obtained from the mean-field analysis,
Eg. (13), and from the simulations (solid line
and open circles respectively) plotted versus
the normalized field. The bold circles indicate

the theoretical value of the energy
corresponding to the checkerboard
configuration of vortices in the square

network, E = N,¢; /(32L).

The numerical simulation, discussed
in the next section, offers a more accurate



solution, not Ilimited to disordered
distributions of vortices in the network.

Numerical simulation

For a given external field H we
calculate the total number of vortices in the
system as

N, =N,I’H/¢,. (14)

We initially distribute these vortices
randomly throughout the network. Then,
we employ the following procedure to find
the currents J,, through all edges such
that the total energy of the network is

minimized: We assign a circular current fﬁ

to each loop £ and express J,, in terms of

~

Jy!
Jsu=> K2 ,, (15)
]
where the four N,xN, matrices
K’ K',K*and K® are evaluated in
Appendix A, assuming current

conservation at every node of the network
% and periodic boundary conditions. Eq.

(15) provides four sets of M?* linear
equations. By substituting Eq. (15) into Eq.
(5) one gets Ny linear equations with M*
variables J,

N,¢,—HL =Y LK
op

o 5 =;Yaﬂjﬁ, (16)

where Y, =Y LK., is an M*xM* matrix.
)

off

Having the population vector N we
evaluate the vector of the circular currents

J by inversion

J=Y"(Ng,—HL?). (17)

27

Knowledge of J for a given spatial
distribution of the vortices on the lattice
allows calculation of the current matrix J,

using Eq. (15) and thus the total energy E
using Eq. (6).

The minimum energy and the vortex
configuration corresponding to it are found
as follows: One cell is randomly chosen
and the number of vortices in this cell is
reduced by one and subsequently the
number of vortices in one of the
neighboring cells is incremented by one.
We calculate the currents J,, and the

energy for the new configuration. If the
energy of this new configuration is lower
than the energy of the previous state, then
we accept the new one. Otherwise, the old
state is preserved. This process is
repeated for every cell in the network,
completing one sweep of energy
minimization. Such sweeps are repeated
(typically 500-1000 times) until we reach a
steady state. Results of the calculated
energy for a 10x10 network are shown in
Figure 2 (open circles). Convergence of
the calculations presented in Figure 2 was
confirmed for several fields in a
20 x 20 network.

Notably, although the periodicity of
the energy versus field and the occupation
rate are as in the mean field case, the
simulation shows local minima at
normalized fields 1/2+m, with integer m,
corresponding to the checkerboard
configuration * '» % 2% % Hints for
additional minima at normalized magnetic
fields of 1/3and 2/3may be observed in
Figure 2 in agreement with e.g. reference
9. Additional possible minima are in the
noise level. More dramatic differences
between the two approaches of the mean-



field solution and numerical simulations are
found in the case of the double network, as
described below.

Double network

We refer to the double network of
Figure 1a, made up of a square lattice of
side Land square loops of side /<L
oriented at 45° with respect to this lattice
and placed at every vertex of the large
lattice. Each large loop has four short
edges of length ¢ and four long edges of
length x=L-~2¢. (We refer to these
edges as long even though for x</,
J20<L<(1++2)¢). The area of each

small loop is ¢* and the area of each large
loop is I* —/°.

Mean-field solution

When this system is placed in an
external magnetic field H, a fraction f of
the small loops have n+1 flux quanta
through them, and a fraction 1-f have n,
and similarly, a fraction F of the large
loops have N +1 and a fraction 1- F have
N . These quantities are related to the

external field since the total magnetic flux
satisfies

N [f(n+1)+(1- f)n+F(N+1)
+(1-F)N1g, = HN, I’ '

(18)

The left-hand side is the result of
counting the number of flux quanta
according to the above definitions (N, is

the number of loops of each size), and the
right-hand side is the external field
multiplied by the total area of the system.
This leads to
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HI? (19)

N+F+n+f= 5 .

0

In deriving the mean-field solution
for the double grid, we note that as for the
simple square lattice, there are three types
of long edges: those separating two
occupied loops (++), those separating an
occupied loop and a vacant loop (+-), and
those separating two vacant loops (—-).
We assume that the probabilities of finding
each of these types are given
by F*,2F(1-F), and (1-F)*, respectively.
We assume these types of edges carry
currents J,., J, , and J__, respectively.

Therefore, the requirement that the
average current vanishes % reads

+—

(J)=FJ_ +2F(1-F)J,_+ (20)

+(1-F)*J_=0

Each short edge separates a small
loop and a large loop, therefore the types
(+-) and (—+) are not symmetric as for the

long edges, and we need to deal with four
types of edges: separating two occupied
loops (++), separating an occupied small

loop and a vacant large loop (+),

separating a vacant small loop and an
occupied large loop (—+), and separating

loops (—). We assume
currents j.., j._, j,, and j _ on them,

two vacant

and within the mean-field approximation,
the probabilities of finding each of them are
given by fF,fd-F), ({-f)F, and
1-HA-F), respectively. The
requirement that the average current on
the short edges vanishes is

()=fFi.+fA-F)j_+1-HF_ + (21

+A=-fHA=-F)j__=0



An occupied small loop has the
following relation between the integral of
the currents around it and the magnetic
flux through it,

AFj,, +(A-F)j, 1=m+Dg, - HI*, (22)

For a vacant small loop we similarly
have

ANFj . +(-F)j 1=n¢,—HI*. (23)

The currents on each of the edges
are determined by the flux in the large loop
on the other side of that edge, and we
have used the mean-field assumption that
the flux in adjacent loops is uncorrelated,
thus the probabilities for having each of the
neighboring large loops occupied or vacant
are F and 1-F, respectively.

Similarly, an occupied large loop

has
4€[f.]++ +(1_f).]7+]+ (24)
+4x[FJ,, +(1-F)J, 1=,
=(N+)g, —H(L* —1?)

and a vacant large loop has
4€[f.]++ +(1_f).]7+]+ (25)

+4x[FJ,, +(1-F)J, ]=.
=Ng,—H(L*—07)

Multiplying Eq. (22) by Fand Eg.
(23) by 1-F, and adding, leads by the use
of Eq. (21) to

ntf 0 (26)

N+F IX—0*

It is easy to see that now Eq. (20) is
satisfied as well. Together with Eqg. (19),

we obtain N+F=H([’-/(*)/¢, and
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n+f=H(*/¢,. Since N and n should be
integer and f and F fractional, we obtain

F{M}N‘M @7)
9 9

(B2 _|me ’

! {séo } 4

where {s} denotes the fractional part and
lo| the integer part.

We are now left with four equations
(22)-(25) connecting the seven unknown
currents (J,., J. s J s Jios Jois Jous J)-
We use these four equations to express
J..»J _,j.,j_intermsofJ_, j _, Jr
The energy, given by the sum of xJ*> over
2N, long edges and the sum of /j*> over
4N, short edges,

E=2N,x{F*J’ +2F(1-F)J} +

+(1-F)*J2 1+

AN fFE + fA=F) i+

+(= HFZ +1-fH)A-F)j2]
may now be expressed in terms of the
parameters J_, j._, j..We minimize E
with respect to these parameters by
demanding that ¢E/dJ, =CE/qj, =CE/q , =0.
After some algebra, this yields

£ Nt [F(l—F) s f(l—f)] (29)

(28)

4 x+/ Y4

Figure 3a and 3b show the mean-

field calculations (Egq. (29)) of the
normalized energy per unit cell of the
double network and the

occupation,N, =N+F and n,=n+ f, of

the large and the small loops, respectively,
for L/¢/=5. The short period oscillations
shown in Figure 3a are associated with the



large loops. These oscillations are
superimposed on oscillations of longer
period associated with the small loops.
Figure 3b shows that the mean field
solution predicts that the occupation of
both the large and small loops increases
linearly with the field, behaving as in two
separate square networks consisting of
large and small loops. As described in the
next section, the numerical simulations
show that while the occupation of the large
loops increases linearly with the applied
field, the occupation of the small loops
grows in steps, resembling the behavior of
an ensemble of nearly decoupled loops.

(a) o.08

o
o
>

2
EAN ¢’/1)
o
2

0.02
0 T LN DL LR R N BN T T Trrr 1 T
0 05 1 15 2 25 3
HI'/¢,
(b)
60 - 3
~ 40 2
4
20 1
0+ LI AL B L | 1 ——+0
0 1 2 3
HI'/¢,
Figure 3. (Color online) (a) Mean-field

calculations (Eq. (29)) of the normalized energy
per unit cell of the double network and (b) the
occupation, N, = N + F', of the large and the

small loops, n, =n+ f,for L/¢/=5. Note that

the ratio of the slopes of the two lines is 24,
corresponding to the ratio between the areas
of the large and small loops.
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Numerical simulations

For the double network (Figure 1a) the
fluxoid quantization takes a form of two
systems of discrete sums

> LsJs, =Ny —H(L*—0*)  (30)
= .

Zﬁj;/a’ = na’¢0 - Hﬁz

V4

where J,, is the current through the side
0=0,1...7of the loop « in the sub-network
of the large loops and j, is the current
through the side y=0,1...3 of the small
loop «' adjacent to the large loop « (see
Figure 1a). L; =x for §=1,3,5,7and L; =/
for 6=0,2,4,6. Thus, we have N, linear

equations for the population of vortices in
the large loops and N, equations for the

vortices in the small loops. As for the
simple network, we rather use the notation

of circular currents: J for large loops and
j for small loops. The total current in a

specific wire is then expressed using these
circular currents:

Jou = ZAjﬂjﬁ +ZB§57ﬁ
7 7

Ja = Zcéﬂjﬁ +>.DlyJy ’
B 43

(31)

where the N, x N, matrices A°,B°,C” and

D’ are evaluated in Appendix B, assuming
current conservation at every node of the
network % and periodic boundary
conditions. Substitution of the total currents
from Eq. (31) to Eqg. (30) leads to the
quantization rule expressed in terms of the
circular currents



%L‘S J +ZLﬁBaﬂ g =
=3 Y97, + ZW

g
:Na¢o_H(L2 - )
chgﬂfﬂ +Zw;ﬂ,7ﬂ, =

ZY(”J +2Yﬁ]ﬂ =n ¢, — HI?
B

Using vector form we can invert Eq.
(32) and derive the vectors of circular

currents J and j

Jdd] Y@
i - Y

where Y, YV Y? and Y? are N, xN,

sub-matrices, N and n is the number of

vortices in the large and the small loops
respectively written in vector form.

Yo }[N% CH(I? - 1%

(33)
Y® ng, — H'? } ’

The energy of the network is
expressed in terms of the currents in each
wire:

E = (34)

> L,J;, ,

a
0=0.,1,2,3,4,6

by summing over a« we ensure that each
of the sides, including &6=5,7, are
accounted for.

As described in the previous section
the algorithm is based on minimizing the
energy associated with the kinetic energy
of the screening currents induced in the
superconducting network. For the double
network the occupation is described by a
vector of length 2N, , corresponding to N,

small and N, large loops. For a given
external field H , at the initial step the loops
are randomly filled with N, HI / ¢, vortices.
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Using Eqg. (31) and Eq. (33) we calculate
the currents induced in the sides of the
small and large loops. Knowledge of these
currents allows the calculation of the
energy of the network using Eq. (34).

The minimum energy of the double
network and the vortex configuration
corresponding to it are found following a
similar procedure as described above.
Namely, one cell, small or large, is
randomly chosen and one vortex is moved
from this cell to one of its nearest
neighbors and the currents J,, and j,

the energy for the new configuration are
calculated. If the energy of this new
configuration is lower than the energy of
the previous state, then we accept the new
one. Otherwise, the old state is preserved.
We repeat this procedure for every cell in
the network (i.e. 2N, times), completing

one sweep of the energy minimization.
Such sweeps are repeated (typically 500-
1000 times). The symbols in Figure 4
present the results of these calculations for
a network consisting of 10x10 large and
10x10 small loops for different values of
the ratio L/¢. Numerical convergence of
the calculations were confirmed for several
fields ina 20x 20 network of L//=5.

The squares in Figure 4a show the
normalized energy of the double network
for L/¢ =10, 5 and 3. As in the mean-field
solution, oscillations of short periods,
corresponding to the large loops, are
superimposed on the oscillations of large
periods corresponding to the small loops.
However, we note that the waveform of the
large period oscillations resemble that of a
single loop (i.e. minima at integer multiples
of flux quanta and cusps at integer
multiples of half flux quanta) in contrast
with the results of the mean-field solution



(Figure 3a), which exhibits a waveform
similar to the simple square network shown
in Figure 2.

—_
Q0
~—

—3— Simulation (b) 300 © N, Simulation
—— N Mean-field, Eq. 33

200

=
o~
N‘&Q A 3 A
T N S
z T koo g Y
E © n_ Simulation
n Mean-field, Eq. 33
1 1.5 2 2.5
1 1 1 1
2
HI/¢,

<N >

E/(NT¢02/Z )

E/(NT¢02/Z)
<N >
< uU>

1.5

2
HI/g,

Figure 4. (Color online) (a) Normalized energy per unit cell obtained theoretically after minimizing
Eqg. (37) (bold solid lines) and from simulations (squares connected by thin lines as guide for the
eye). (b) Average number of vortices per large loop, < N, >, and per small loop ,<n, > , obtained
theoretically (Eq. (37)), (dashed and solid lines, respectively) and from simulations (diamonds and
circles, respectively). The different panels relate to double networks with size ratios L/¢/ =10, 5
and 3 (from top to bottom). Both numerical and analytical solutions show breaks around the
middle of the steps resulting from competition in occupation of large and small loops. This
competition occurs in the field range where the energy cost to insert a vortex into a small loop or a

large loop is similar. The field increment (in units of H/”/¢,) in the simulations is 0.02for L// =3,
and 0.01 for L//=5and 10. The step in the <n, > plot for L/ ¢ =10 is relatively sharp (< 0.01)

and hence points on this step are absent.
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The diamonds and circles in Figure
4b show the average number of vortices
per loop calculated for the large and small
loops respectively, as a function of the
magnetic flux normalized to the area of the
small loops. Results are shown for three
ratios L/¢=3,5,10. The large loops are

filled with vortices approximately linearly as
the magnetic field increases. In contrast,
the small loops are filled in a step-wise
manner that becomes sharper as the ratio
L/¢ increases. This indicates that the
system prefers to distribute vortices
between the large loops and to expel
vortices from the small loops. Only when
the normalized magnetic field is close to
0.5+m, the system may accept vortices
into the small loops. This behavior is not
predicted in the framework of the mean-
field solution as described in the previous
section. The step-wise occupation and the
energy waveform both imply that the sub-
lattice of the small loops behaves as an
ensemble of decoupled single loops #'. In
the next section we show how these
results may be obtained theoretically from
a modified mean-field model, assuming
decoupling of the small loops.

Modified mean-field model

As mentioned above, the mean-field
analysis of the double network described in
the beginning of this section shows that the
two sub-lattices of the double network are
populated as two separate square lattices.
This is in contrast with the results of the
simulations presented in this section that
show stepwise occupation of the small
loops. We will now show how an
assumption on the decoupling between the
small loops may be introduced into the
mean-field description, and that this hybrid
framework explains the numerical findings.

E _Bip g cara-F) 2 +(1-Fy I+
N, 4

We incorporate the decoupling of the small
loops by ignoring the requirement that the
currents around them should match with
the currents on their neighboring large
loops. Namely, for the large loops we
assume the square-lattice mean-field
description with Eq. (11) replaced by:

BUFI  +(1-F)J _1=(N+D)g—a,H (39)
ﬂL[FJ+_+(1—F)J__]:N¢o_aLH .

Here, the total area N,L’ is covered by a
square lattice of N, large loops, each with
area a, =L~ and
B, =4(x+0)=4(L+(1-~2)¢), and with N,
disconnected small loops, each with area
ag =(* and perimeter B, =4¢. We use the

perimeter

conventionN, F, n and f, from the

beginning of this section to describe the
population of these loops, and as in the
mean-field solution, compliance of the total
magnetic flux with the external field leads
to Eq. (19).

For each small loop, we assume
that the current is distributed uniformly
around its perimeter; for a small loop
carrying k vortices, this current is thus
j=(k¢,—a,H)I/ B, resulting in an energy

E=jB,=(k¢,—a H)/pB, . From (35), we
express J,, and J__ in terms of J, _, and

substitute the result in the expression for
the energy:

(36)

3

/ [ng, - aSH]Z

+ﬂ[(n+1)¢0—aSH]2+1_f

N N

where the first term is the mean-field
expression for the contribution to the
energy from the large loops (see Eq. (12)),



and the last two terms average the
contributions from populated and vacant
small loops according to their abundance.
By minimizing E with respect to J, we
eventually obtain:

E _[(N+P)$-a,H +2F(1-F)¢}  (37)
N, 4,
N+ Ny —aHY + (- 1)dy
s

Note that we are still free to choose the
ratio (N+F)/(n+ f) such that Eq. (37) is
minimized.

The bold solid lines in Figure 4a show
the normalized energy per unit cell
obtained after minimizing Eq. (37) for
L/¢=10, 5 and 3 (from top to bottom).
Impressive agreement with the results of
the simulations (circles in Figure 4a ) is
evident. The dashed and solid lines in
Figure 4b show the average number of
vortices per large loop, N,, and per small

loop, n,, respectively, as calculated from

Eq. (37). These results are in perfect
agreement with the results of the
simulations described by diamonds and
circles in Figure 4b. Note that our hybrid
model treats the large loops by mean-field
interactions and the small loops as
disconnected. Yet, the behavior of the
small loops is not identical to that of loops
without network, since the presence of the
large loops affect the distribution of
vortices in the small ones. For example, as
shown in Figure 4b, for small L/¢ the
steps in n, are not sharp as expected for

loops without network. These steps
become sharper as the ratio L//
increases.
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Spatial configuration of vortices

Our numerical simulation allows
mapping the occupation of the small and
large loops in the double network in the
state of minimum energy, for different
external fields. Figure 5 shows the
distribution of vortices in a double network
with L/¢=5 at low normalized fields. In
this field range the large loops are
occupied in the same way as a simple

square network: For H/¢*/¢,=0.01 vortices

are located far away from each other; at
H(? /¢, =0.02 corresponding to half filling

of the large loops, H(L’-/¢°)/¢, ~0.5, a

checkerboard distribution > > ' g

observed in the large loops, while all small
loops are empty; at H¢* /¢, =0.03 most of

the large loops are occupied with one
vortex. The small loops, however, are
empty at all these fields and, therefore, a
plateau in n (H) is observed in Figure 4b.

Figure 6 shows the vortex distribution
in a double network with L//=5 at

relatively high fields of H/*/¢, = 0.48,0.50

and 0.52. In this narrow field range the
number vortices in the small loops
increases sharply from zero at 0.48 to one
at 0.52. The n, (H) curve at these fields

(Figure 4b) corresponds to the transition
from one plateau to another. As the field is
further increased, the number of vortices in
the large loops increases linearly, while the
number of vortices in the small remains
constant.

Summary

We have theoretically studied the
recently realized superconducting double
network consisting of two interlaced sub-
networks of small and large loops. Our



numerical simulations show that the vortex
occupation of the large and small loops is
completely different. Vortices prefer to
occupy the large loops, even in large
numbers, before the occupation of the
small loops begins. The population of the
sub-network of the large loops increases
linearly with the field, while the occupation
of the sub-network of the small loops
grows in steps. The energies of both sub-
networks oscillate with the field with
different periodicities determined by the
areas of the large and small loops. The
energy oscillations of the sub-network of
the large loops are of low amplitude and
short period and resemble that of a simple
square network, exhibiting cusps at the
beginning and at the end of each period.
These oscillations are superimposed on
the high amplitude and long period energy
oscillations of the sub-network of the small
loops, which resemble the energy
oscillations of isolated loops exhibiting
cusps at the middle of each period. The
low amplitude of the energy oscillations of
the large loops is a result of the relatively
small screening current induced in the
large loops. At the end of the first short
period each of the large loops is occupied
with one vortex, in the next period with two
vortices, efc. In contrast, the sub-network
of the small loops remains empty up to
fields of approximately half of the long

period, i.e. ¢,/2¢*. Up to this field the
screening current in the small loops

increases linearly and consequently the
contribution to the energy increases

quadratically with the field. Around ¢,/2¢°,
in a relatively narrow field range defined by
the ratio L/¢, all the small loops are filled
with one vortex. In the next long period, at
34,/(2¢*), each of the small loops is

occupied with two vortices, etc. Thus the
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behavior of the small loops resembles that
of a single loop.

The above physical picture is
explained by a modified mean-field
analysis in which we treat the large loops
by mean-field interactions and the small
loops as disconnected. This hybrid
framework yields the stepwise population
and energy oscillations in excellent
agreement with the numerical simulations.
We therefore conclude that the sub-
network of the small loops behaves as a
large ensemble of decoupled loops. As
demonstrated in Figure 4b, the degree of
decoupling improves as the size ratio L//
between the two networks increases.

The numerical simulations have the
advantage in providing the actual vortex
distribution in the network as a function of
the external field as demonstrated in Figs.
5 and 6. Experimental imaging of vortex
distribution in simple networks of micron
size squares has been previously
performed using Hall probe technique % #°,
scanning SQUID microscopy *° and Bitter
decoration 3", Extension of these works
to imaging of vortex distribution in nano-
loops of the double network may be
realized by exploiting Magnetic Force and
SQUID microscopy. This study may lead to
novel designs of network and methods of
controlling the position of a single vortex,
with implications to future nano-scale
superconducting devices. Our work may
also be applicable to the recent activity on
arrays of single-domain ferromagnetic
islands 3%



Normalized field=0.01

Number of vortices per cell
, o

Figure 5. (Color online) Vortex configuration in

the double network at low normalized fields,
H(* /¢, =0.01,0.02 and 0.03, for L//=5.
The large loops are continuously occupied in
the same way as in a simple square network
while the small loops remain empty. Note the
checkerboard distribution at H/(* /g, =0.02
corresponding to half filling of the large loops,
H(L-0*)/¢,~05.
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Normalized field=0.48

0.5

0.52

Number of vortices per cell

0 12

Figure 6. (Color online) Vortex configuration in

the double network at relatively high fields
H(*/¢,=0.48,0.5 and 052 for L//=5.

Note that in this narrow field range the
number of vortices in the small loops increases

sharply from zero to one.



Appendix A - Kirchoff-
law's matrices for the simple
square network

The four M? x M * matrices
K’ K',K*and K* with periodic boundary
conditions have the form

1 if a=p
o L a=pl and a#0,M,2M ...M*-M
Pl if a=p-M+1 and a=0,M,2M..M>*-M
0  otherwise
1 if a=p
K- -1 if a=p+M and a=zM
PN if a=p-M*+M and a<M’
0  otherwise
1 if a=p
o -1 if a=p-1 and a#M-1,2M -1..M* -1
YAl if a=p+M-1 and a#M-1,2M-1..M*—-1
0  otherwise
1 if a=p
PO a=p-M and a<M®-M
Y-l if a=p+M>*-M and a=M>-M
0  otherwise

This matrix uses Kirchoff’'s law to
express the total current in a specific wire
in a square network using the circular
currents in two adjacent loops sharing the
same wire. Using Eq. (15) one can get for

examplejo,M+1 =Jua _JM’JI,MH =Jya—J1s

~

S =Iwa Iy and J, 0 =Jy0 oy
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Appendix B - Kirchoff-
law's matrices for the double
network

The matrices A° B°,C” and D’

with periodic boundary condition are
evaluated as



1 0 . A3 _ 7l . A5 _ p2 .47 _ 3.
Ay = Kops Aup = Kops Agp = Kops Agp = Ko
1 if a=
A2/3= §ﬂ= ;/3=A2/3= / .ﬂQ
0 otherwise
1 3 5 .
B,,=B,,=B,, =B, =0;
-1 if a=p-M and a<M*-M
By, =<-1 if a=p+M’-M and a>M*-M;
0 otherwise
B —{_1 if a=p
afp 0 . ’
otherwise
-1 if a=p-1 and a#M —1,2M —1..M* -1
B,=1-1 if a=p+M-1 and o=M—-1,2M —1..M*> —1;
0 otherwise
0 if a=M*-1 and p=0
-1 if a=p-M-1 and a<M’-M and a#M-1,2M —1...
By, =4-1 if a=p-1 and a=M-1,2M —-1..M*-M —1
-1 if a=p+M*-M-1 and a#M*-1 and a#M-1,2M —1..
0 otherwise
0 if a=0 and f=M*-1
1 if a=p-M’+M+1 and O<a<M
Coy=1-1 if a=p+1 and a=M.2M..M*-M and a#0
-1 if a=p+M+1 and a>M-1 and a#M,2M..M*-M
0  otherwise
-1 if a=p-M>+M and a<M
C;ﬂ -1 if a=p+M and a=M;
0  otherwise
C2 _ -1 lf a:/g.
aff . >
0  otherwise
-1 if a=p-M+1  and a=0M..M*-M
C,=4-1 if a=p+1 and a#a=0,M..M*-M:;
0  otherwise

0 1 2 3
D,=D,=D,=D,,=

1 if a=p
0 otherwise
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These matrices use Kirchoff’s law to
express the total current in a specific wire
in the double network using the circular
currents in two adjacent loops sharing the
same wire. Using Eq. (31) one can get, for
JI,M+1 =Jyu—JIu

example, and

~ ~

Jomst = Ims1 — I -
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Uncorrelated behavior of fluxoids in superconducting double networks
|. Sochnikov', I. Bozovi¢?, A. Shaulov' and Y. Yeshurun'

'Department of Physics, Institute of Superconductivity and Institute of Nanotechnology and
Advanced Materials, Bar-llan University, Ramat-Gan 52900, Israel

2Brookhaven National Laboratory, Upton, New York 11973-5000, USA

We study the effect of magnetic fields on the resistance, R, of a superconducting
Laq 84Sro.16CuQ, film patterned into a 'double’ network comprising nano-size square
loops having their vertexes linked by relatively long wires. The results are compared
with those obtained in a regular network of square loops of the same size. Both
networks exhibit periodic dependence of R on the ratio ®/®d, between the flux

penetrating a loop and the superconducting flux quantum. However, while the regular
network exhibit features characteristic of collective behavior of the loops, the double
network exhibits a single loop behavior. This observation indicates uncorrelated
arrangements of fluxoids in the double network, in agreement with a recent theoretical

prediction.
A variety of superconducting
networks have been studied, both

theoretically and experimentally, aiming at
revealing correlated behavior of fluxoids in
such networks ', The foundation of these
studies traces back to the fluxoid
quantization work of Little and Parks 7
who demonstrated in magnetoresistance
measurements the theoretical prediction of
F. London '® showing that the deviation of

the magnetic flux through a
superconducting loop from an integral
number of flux quanta must be

compensated by a circulating current,
satisfying the equation
2

24 )Bj-cw:n—g,

c®, D,
where the line integral is taken around the
loop, A is the penetration depth,® is the
magnetic flux penetrating the loop, and @,

is the superconducting flux quantum. In a
network, the above equation must be
satisfied for any and every loop. In
addition, the arrangements of fluxoids on
the underlying network must fulfill the
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requirement of minimum energy. These
two requirements give rise to correlated
arrangements of fluxoids in periodic
networks, the most famous one being the
checkerboard arrangement of fluxoids in a
regular square network & ' % 19
manifested by secondary dips of the
magneto-resistance at half integer values

of®d/d,.

Recently, we fabricated a novel type
of superconducting network 2* 2! made by
connecting the vertexes of small square
loops with relatively long wires, forming
two interlaced sub-networks of small and
large loops. The motivation for designing
such a network was to create an array of
decoupled small loops that behave like
isolated loops. In a previous manuscript %
we theoretically simulated the behavior of
this unique network in a perpendicular
magnetic field. The simulations showed
that as the field increases, the vortex
population in the small loops grows in
steps, resembling the behavior of an
ensemble of nearly decoupled loops. In



addition, the loop energy E was found to
be a periodic function of the ratio®/®,,

with a waveform similar to that of a single
isolated loop. Features indicative of
collective behavior of the loops, e.g. finite
slope dE/dH at H =0, downward cusps
in E(H) and pronounced secondary dips

at half integer values of®/®,, which are

found in a regular square network, are all
absent in the case of a double network.
The purpose of the present work was to
confirm experimentally the predictions of
these simulations. For this purpose we
fabricated a regular square network and a
double network having square loops of the
same size, and compared their
magnetoresistance behavior.

Molecular Beam Epitaxailly grown
Lais4Sro.16CuO4 high-T,. superconducting
flms (nominally 26 nm thick) were
patterned into a regular square network of
150x150 nm? loops, and a double network
consisting of square loops of the same
size having their vertexes connected by
~300 nm long wires, as shown in Figure 1.
The wire width in both networks was ~45
nm. Resistance measurements were
performed using a Quantum Design
PPMS® with bias current of 100 nA.
Magnetic fields were applied normal to the
film surface (a-b crystallographic plane),
keeping a constant temperature in the
range 20—40 K with stability of few mK.

Figure 2 shows the magneto-
resistance per unit cell, R(H), for the

square network (left panel) and for the
double network (right panel) as a function
the applied magnetic field H, measured at
the indicated temperatures. Both networks
exhibit periodic oscillations of R vs. H
with  the same period of~900O0e,
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corresponding approximately to ®,/A
where A=150x150nm? is the area of a
single square loop. However, the

oscillations waveform,R(H), for the two

networks is evidently different. While the
regular  network  exhibits  features
characteristic of collective behavior of the
loops, e.qg. finite slope dR/dH atH =0 and
downward cusps, the double network
behavior resembles that of a single loop,
exhibiting zero slope dR/dH at H =0 and
upward cusps.

a
150 nm
[
b
150 nm
|

Figure 1. Scanning electron microscopy image
of the square (a) and the double (b) networks
patterned in La;g4Srg.16CuO4 high temperature
The the
superconducting the

film. brighter elements are

wires  composing

networks.
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Figure 2. (Color on line) Resistance per
network unit cell as a function of magnetic
field measured at different temperatures in

the square (a) and the double (b) networks.

A closer look at the
magnetoresistance oscillations reveals fine
structures in the magnetoresistance of the
both networks. In Figure 3 we zoom on the
magnetoresistance data of each network
at a temperature T/T, ~0.85.The square

network (Figure 3a) exhibits pronounced
secondary dips at half integer values
of ®/®, (see inset), corresponding to the

checkerboard arrangement of vortices in
this network & ' ' ' |n the double
network these secondary dips are absent;
however, as shown in the inset to Figure
3b, oscillations of a period~800e,

corresponding to the sub-network of the
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large loops, are superimposed on the
longer period oscillations, shown as a
parabolic-like 'envelope' in the inset to
Figure 3b, originating from the sub-network
of the small square loops. These small
oscillations, which are more pronounced at
the minima of R(H), exhibit downwards

cusps characteristics of the square
network behavior originating from the large
loops.

Figure 2 shows that in both
networks the oscillatory behavior of R is
limited to a temperature range roughly
between ~22 and ~31 K, resulting in non-
monotonic variation of the oscillations
amplitude AR with the temperature, as
summarized by the squares in Figure 4.
This figure also shows the temperature
dependence of the network resistance per
unit cell R(T) (circles), as well as dR/dT

(diamonds), for the regular and the double
networks. Evidently, R(T) of the double

network is significantly larger as it includes
the resistance of the long wires composing
the large loops. Nevertheless, the unit cell
amplitude of the oscillations, AR, for both
networks are similar, indicating that it
cannot distinguish between correlated and
uncorrelated behavior of fluxoids in
networks of loops of the same size.
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Figure 3. (Color on line) Resistance per

network unit cell as a function of magnetic
field measured in the square (a) and the
double (b) networks at 26.5 and 25.5 K
respectively. The insets zoom on the regions
marked by dashed lines. Inset (a) shows a
secondary dip at half period corresponding to
checkerboard arrangement of vortices in the
(b) the
magnetoresistance oscillations corresponding

square network. Inset shows

to the large loops of the double network. The
solid line in inset (b) is a guide for the eye

showing parabolic-like '‘envelope’
corresponding to the small loops.
By passing we note that no

correspondence is found between AR and
dR/dT, see Figure 4. Such a
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correspondence should follow if we
assume that ARresults from periodic
changes in the critical temperature 7., as

in the analysis of the Little-Parks
experiment . More remarkable
deviation from this analysis is found in the
magnitude of AR. Contrary to classical
superconductors, the predicted changes in

the critical temperature, AT, < T.(&,/r), in
high-7. materials are extremely small
because of the short coherence length &,

failing to explain the large amplitude of the
oscillations # 2*. In previous papers 2* #'
we developed a model for a single,
isolated loop which explains the details of
the double network magnetoresistance,
including the large oscillations amplitude
and its temperature dependence. This
model ascribes the magnetoresistance
oscillations in high-T. superconductors to

the periodic changes in the interaction
between thermally-excited moving vortices
and the oscillating persistent current
induced in the loops. The model explains
well the magnitude of AR as well as its
temperature dependence 22",
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Figure 4. (Color on line) Resistance, R,
measured at zero magnetic field (circles),
amplitude of the magnetoresistance
oscillations (squares), and the derivative
dR/dT  (diamonds) as a function of

temperature in the square (a) and the double
networks (b). Solid lines are guide to the eye.

In summary, we observed different
fluxoid quantization effects in a
superconducting double network as
compared to a regular, square network.
The regular network exhibit correlated
behavior of the fluxoids, which s
manifested by e.g. finite slope dR/dH
atH =0, downward cusps and secondary
dips at half integer values of ®/®,. In

contrast, the sub-network of the small
square loops in the double network
exhibits a single loop behavior lacking all
these features. This observation indicates
uncorrelated arrangements of fluxoids in
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the sub-network of the small loops, in
agreement with our recent theoretical
prediction. Experimentally, the double
network has an advantage over a single
loop as it allows application of larger
currents, thus improving the signal to noise
ratio. In addition, measurements on large
number of loops in the network average
effects of inhomogeneity and size
distribution, allowing more precise studies
of e.g. recent theoretical predictions of
‘exotic' flux periodicity in unconventional
superconductors 22,
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Large oscillations of the magnetoresistance
in nanopatterned high-temperature

superconducting films

llya Sochnikov'*, Avner Shaulov', Yosef Yeshurun'!, Gennady Logvenov? and Ivan BoZovic?

Measurements on nanoscale structures constructed from high-
temperature superconductors are expected to shed light on the
origin of superconductivity in these materials™”. To date, loops
made from these compounds have had sizes of the order of hun-
dreds of nanometres® ™. Here, we report the results of
measurements on loops of La, 5,Srq,,Cu0,, a high-tempera-
ture superconductor that loses its resistance to electric cur-
rents when cooled below ~38 K, with dimensions down to
tens of nanometres. We observe oscillations in the resistance
of the loops as a function of the magnetic flux through the
loops. The oscillations have a period of h/2e, and their ampli-
tude is much larger than the amplitude of the resistance oscil-
lations expected from the Little-Parks effect'>'®, Moreover,
unlike Little-Parks oscillations, which are caused by periodic
changes in the superconducting transition temperature, the
oscillations we observe are caused by periodic changes in the
interaction between thermally excited moving vortices and
the oscillating persistent current induced in the loops.
However, despite the enhanced amplitude of these oscillations,
we have not detected oscillations with a period of h/e, as
recently predicted for nanoscale loops of superconductors
with d-wave symmetry'¢, or with a period of h/4e, as predicted
for superconductors that exhibit stripes’.

Molecular beam epitaxy (MBE) was used to synthesize 26-nm-
thick films of optimally doped La, 4,Sr,,,CuO, on single-crystal
LaSrAlO, substrates polished perpendicular to the (001) direc-
tion'®!!. The films were characterized in situ by reflection
high-energy electron diffraction (RHEED), and ex situ by X-ray
diffraction, atomic force microscopy and mutual inductance
measurements. Subsequently, as detailed in the Methods, the films
were patterned into a network of ‘small’ square loops, the sides of
which were between 75 and 150 nm long, separated by ‘large’
square loops with sides of length 500 nm; the width of all features
was ~25 nm. A typical network of small and large loops is shown
in Fig. 1. The length and width of the small squares were almost
an order of magnitude smaller than those in previously studied
high-T. networks and rings®!'%.

Figure 2 shows the magnetoresistance of the 150/500-nm network
measured at T = 28.4 K in a magnetic field applied normal to the film
surface (and to the a-b crystallographic plane). The measured magneto-
resistance exhibits large oscillations superimposed on a parabolic-
like background. The period of these oscillations, H,~ 950 Oe,
corresponds to the magnetic flux quantum, ®,=h/2e=AH,,
where h is Planck’s constant, e the electron charge and A the area
of the small loop. Oscillations with a period of ~80 Oe, which
correspond to the large loops, are also observed, but their amplitude
is too small to be noticed on the scale of Fig. 2.

The measured magnetoresistance, normalized to the normal-
state resistance at T=30.2 K, R, = 36 (), is presented in Fig. 3a as
a function of the temperature T and the applied magnetic field H.
Periodic oscillations of R are observed for temperatures between
26 and 30.2 K. The temperature dependence of the amplitude of
these oscillations is described by the diamonds in the inset to
Fig. 2. Note that the field range in Fig. 3 is limited to low fields
where the parabolic-like background is insignificant.

It is tempting to interpret these data as Little-Parks oscil-
lations®'>™'7 originating from the periodic dependence of the
critical temperature T, on the magnetic field. However, the ampli-
tude of the oscillations seen in Fig. 2 is much too large. Taking
a typical value' for the coherence length in La, g,Sr,,,CuO,

Figure 1 | Patterned superconducting film. Main panel: scanning electron
microscope (SEM) image of a La; g,Sr16CuO, superconducting film covered
with a patterned layer of poly(methyl methacrylate) (PMMA) resist (thin
lines with bright edges). The left inset shows an SEM image of a part of the
resulting superconducting network (150 x 150-nm? loops separated by

500 x 500-nm? loops) after the uncovered parts of the film were removed
by ion milling. The right inset shows the measured (white circles)
temperature dependence of the network (30 x 30 wm?) resistance in zero
magnetic field near the superconducting transition; the current is 1A. In
the patterned film the onset temperature for superconductivity is 30.2 K
and the transition width is ~2 K (compared with 38 K and ~0.5 K for the
as-grown film).

'Department of Physics, Institute of Superconductivity and Institute of Nanotechnology and Advanced Materials, Bar-llan University, Ramat-Gan 52900,
Israel, ’Brookhaven National Laboratory, Upton, New York 11973-5000, USA. *e-mail: ph89@mail.biu.ac.il
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Figure 2 | Magnetoresistance oscillations. Resistance of the

La; g4Srg16CUO,, network shown in Fig. 1 as a function of applied magnetic
field, measured at 28.4 K. The oscillations are superimposed on a parabolic-
like background. The amplitude of the oscillations, AR, is well defined at low
fields. Inset: AR as a function of temperature; the solid line is a theoretical fit
based on equation (5). The dashed line is an upper limit for the amplitude of
resistance oscillations calculated for the Little-Parks effect (right axis; note
that the scale on this axis is expanded tenfold).

of & =2nm, the measured critical temperature at zero field
To™=30.2 K, and the loop effective radius r=a/\/m = 83.5 nm
(a=150 nm is the loop side length), one would expect to find
oscillations in T. with an amplitude AT. = 0.14T.(&,/r)* ~ 2.4 mK
(refs 8,12,13,15,16) . This value of AT, yields an upper limit to
the resistance amplitude, AR= AT.(dR/dT), depicted by the
dashed line in the inset to Fig. 2, the maximum value of which is
a factor of ~50 smaller than the measurement from our experiment.

Given that the Little-Parks effect cannot explain the observed
large magnetoresistance oscillations, we suggest that the origin of
this phenomenon is the drastically modified vortex dynamics in
the patterned film. Although in continuous films the activation
energy for vortex creep usually decreases monotonically with the
applied magnetic field'*?!, in nanopatterned films this activation
energy becomes oscillatory, as moving vortices interact with the
current induced in the nanoloops, which is a periodic function of
the field strength. Periodicity of the induced current results directly
from the fluxoid quantization!?!*!>22, which is also the source of the
Little-Parks effect. The fluxoid, consisting of the flux induced by the
supercurrent in the loop and by the external magnetic field, is
characterized by the quantum vorticity number N, which defines
the energy state of the superconducting loop. In the lowest energy
state, N is equal to H/H, rounded to the nearest integer'>!°.

Thermal excitation of vortices causes fluxoid transitions from the
equilibrium quantum state N to a higher energy state. Other
groups?>?*, in their analysis of magnetic scanning microscope
measurements of a mesoscopic superconducting ring, have
calculated the energies AE; * and AE,,* required to create a
vortex (+) or an antivortex (—) and carry it into or outside of the
superconducting loop, respectively:

AE,* = AE,* =E,+ E[+(N—H/H)) +1/4 (1)

The first term in equation (1), E, = (@7 /(87" A(T))) In(2w/(w&(T))),
is field-independent and represents the energy needed for the cre-
ation of the vortex/antivortex in the superconducting wire. Here,

w is the wire width, &(T) = 0.74&,(1-T/T.) /2 is the Ginzburg-
Landau coherence length's, and A(T)=2A(T)*/d is the Pearl

penetration depth!®? in a film of thickness d and with a London
penetration depth A(T) = A,(1-(T/T.)*) /% The second term in
equation (1) is periodic with the field, expressing the interaction
of a vortex or an antivortex with the current associated with the
fluxoid in terms of the energy, E, = ((I)g/(S'n'zA(T)))(w/a). Note
that equation (1) is valid in the limit of large penetration depth,
A > w, and for narrow rings with widths much smaller than the
radius of the loops, r. Nevertheless, the width has to be sufficiently
large to accommodate a vortex?®. The quantized values of N lead to
periodically oscillating values of (N—H/H,,).

In the following we consider fluxoid transitions accomplished by
only one vortex or antivortex entry and exit. Thermodynamic aver-
aging of these four types of excitation energies, AE;, yields an effec-
tive potential barrier AE,

AE, = Z AE e~ MilkT /Z o~ AE/kT @)
By inserting equation (1) for AE;, one obtains
AEg ~ (E, + Ey/4) — E;*(N-H/H,)’ /ky T A3)

which includes a field-independent term and a term periodic with
the field.

We derive the magnetoresistance by applying Tinkham’s
approach in analysing the broadening of the resistive transition in
high-T, superconductors?. Replacing the activation energy in his
equations with AE_ g given in equation (3), yields

R _[; (AEa\]™
R, | "\2kgT
where I is the zero-order modified Bessel function of the first kind.

Equation (4) describes a periodic function with period H,= &,/A
and temperature-dependent amplitude

E 2
AR~ R u
()

where a = (E,+ E,/4)/(2kgT), and I, is the first-order modified
Bessel function of the first kind. Note that E, and E; are a function
of the two length scales, A, and &, which can be used as fitting par-
ameters for the measured temperature dependence of the amplitude
of the oscillations. The fit shown by the solid line in the inset to
Fig. 2 yields A, =750 nm and & = 2.4 nm. Note that these values
of A, and & may be influenced by the lithographic process, which
may cause damage in regions near the surfaces, thus making the
effective thickness and width significantly smaller than the
nominal values.

Figure 3b presents calculation of R(H,T)/R, based on equation
(4) and using the above values for A, and &, The calculated
R(H,T) is similar to the experimental results (Fig. 3a) in low mag-
netic fields where the parabolic-like background on which the oscil-
lations are superimposed is negligible (see Fig. 2). Extension of this
analysis to also describe the background arising at higher fields
requires modification of equation (1) to include field-dependent
terms of higher order?*. Comparing the details of the experimental
and calculated waveforms shown in Fig. 3a and b, one notices that
the experimental resistance oscillations look rather sinusoidal,
whereas the calculated results exhibit a ‘scallop’ shape with
sharper curvature at the top than at the bottom. This difference is
most likely related to the distribution of the size of the
fabricated loops.

We note that equation (4) can also explain the broadening of
R(H=0,T) in the patterned film as shown in the inset to Fig. 1.
In zero field, R depends only on the non-periodic part, E,, in

4)

11 ()
(I(@)’

)
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Figure 3 | Comparison of measured and calculated magnetoresitance oscillations. a, Measured normalized resistance of the network shown in Fig. 1 as

a function of the applied magnetic field and temperature. b, Normalized resistance calculated using equation (4) for wire width w =25 nm, film thickness
d= 26 nm, zero-temperature penetration depth A\, =750 nm and coherence length &, = 2.4 nm. The calculation was made for circular loops of the same
area as the square loops: that is, with an effective radius r=a//m=83.5 nm (a=150 nm is the actual loop side length). The values for A, and &, are
obtained from the fit of equation (5) to the temperature dependence of the amplitude shown in the inset to Fig. 2. The colour changes from blue to green
to orange to white as the resistance increases from zero to the normal-state value.

equation (3), which decreases as the wire width w is reduced. This
allows for easier excitations of vortices and antivortices at lower
temperatures, giving rise to non-zero resistance.

In general, magnetoresistance oscillations originate from both
the Little-Parks effect and the modified vortex dynamics reported
here. However, in high-T,. superconductors, the contribution of
the Little-Parks effect is relatively small because of the short coher-
ence length?!, and the contribution of the vortex dynamics is large
because of strong thermal fluctuations?. It should be mentioned
that large-amplitude magnetoresistance oscillations have previously
been observed in a different nanostructure made of two low-T,
superconducting nanowires. These oscillations were attributed to
the field-driven modulation of barrier heights for phase slips?®%.

150 nm
28.5K
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amplitude (a.u.)

0 1 2 3 4
1/® (2e/h)

75nm
28K

Fourier transform
amplitude (a.u.)

0 1 2 3 4
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Figure 4 | Periodicity of the magnetoresistance oscillations. a,b, Amplitude
of the Fourier transform of the magnetoresistance oscillations versus inverse
magnetic flux in the 150-nm loops at 28.5 K (a) and the 75-nm loops at

28 K (b). The h/2e periodicity is apparent, but the h/e periodicity is absent,
and the h/4e periodicity appears as the second harmonic of the h/2e
fundamental component.

As that interpretation relates to the one-dimensional superconduct-
ing wires (w < §), it may not be directly applicable to our high-T,
loops in which the wire width is an order of magnitude larger
than the coherence length.

Recent theoretical studies'™ predicted that the magnetoresis-
tance in high-T, superconducting nanorings with a d-wave
order-parameter should show an additional component with flux
periodicity h/e. This component is expected even for loops of
length scales larger than the coherence length. Figure 4 shows the
Fourier transform analysis of magnetoresistance oscillations for both
the 75- and 150-nm loops. Evidently, despite the enhanced magneto-
resistance oscillations observed in our experiment, a periodicity of
h/e is not observed, even in the 75-nm loops (which are the smallest
prepared so far with high-T_ superconductors).

More recently, a periodicity of h/4e (corresponding to half a
quantum of flux) was predicted for striped high-T. superconduc-
tors, replacing the usual periodicity of h/2e (which corresponds to
a quantum of flux’). As is evident from Fig. 4, in our optimally
doped La, ¢,Sr;,,CuO, films, the h/4e flux periodicity does not
replace the h/2e periodicity, but only appears as its
second harmonic.

In summary, the resistance of a network of nanoscale loops of
La, ¢,Sr;,,CuO, oscillates as a function of the magnetic flux
through the loops in a way that cannot be explained by the classic
Little-Parks effect. These oscillations are rather attributed to the
field-driven modulation of the height of the energy barrier to
vortex motion. The absence of /e and h/4e periodicities in these
oscillations is at variance with some recent theoretical predic-
tions'™” for this type of system. However, efforts to discover such
periodicities should continue by extending this work to higher
and lower doping across the entire phase diagram.

Methods

The La, 4,Sr,,,CuO, films were synthesized by MBE and spin-coated with
poly(methyl methacrylate) (PMMA) electron-beam resist with a molecular weight of
495,000, diluted with anisole, providing a thickness of 180 nm after 1 min of
spinning at 4,000 rpm. The samples coated with PMMA were subsequently baked
for 90 s on a hotplate at 100 °C. The desired network pattern was exposed in the
PMMA layer using a CRESTEC CABLE-9000C high-resolution electron-beam
lithography system. The PMMA was used as a negative electron-beam resist; note
that when PMMA is exposed to a sufficiently high electron dose it crosslinks® and
becomes insoluble in most organic solvents. After removing the unexposed PMMA
using methyl isobutyl ketone (MIBK), a mask was formed that defined the desired
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network pattern (Fig. 1, main panel). This pattern was then transferred to the
superconducting film by removing the uncovered parts of film using a standard
argon ion milling process. The result of this last step is shown in the left

inset to Fig. 1.

The network resistance was measured using a Quantum Design Physical
Properties System over temperatures from 2 to 300 K with a stability of about
+0.001 K, and in magnetic fields of up to 9 T. A four-point contact resistance
configuration was used, in which a d.c. current of 1 pA was fed through two
relatively large current leads placed on opposite sides of the network and the d.c.
voltage was measured across an additional two leads. All four leads were made from
the same La, 4,Sr, ,,CuO, superconducting film as a continuous part of the network
to avoid undesirable metal/superconductor contact effects.

Received 1 March 2010; accepted 10 May 2010;
published online 13 June 2010
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Oscillatory magnetoresistance in nanopatter ned superconducting La; g4Sr16CuQO, films
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A superconducting Lay g,Sr 16CuO, film patterned into a network of 100 X 100 nm? noninteracting square
loops exhibits large magnetoresistance oscillations superimposed on a background which increases monotoni-
cally with the applied magnetic field. Neither the oscillations amplitude nor its temperature dependence can be
explained by the Little-Parks effect. Conversely, a good quantitative agreement is obtained with a recently
proposed model ascribing the oscillations to the interaction between thermally excited moving vortices and the
oscillating persistent currents induced in the loops. Extension of this model, allowing for direct interaction of
the vortices and antivortices magnetic moment with the applied field, accounts quantitatively for the monotonic
background as well. Analysis of the background indicates that in the patterned film both vortices and antivor-
tices are present at comparable densities. This finding is consistent with the occurrence of Berezinskii-
Kosterlitz-Thouless transition in La; g4Srg 16CuO, films.

DOI: 10.1103/PhysRevB.82.094513

I. INTRODUCTION

Quantization of the fluxoid in multiply connected super-
conductors was first predicted by Fritz London in the early
days of superconductivity.® This prediction was later con-
firmed experimentally by Little and Parks>* who demon-
strated that a thin-walled superconducting cylinder pierced
by a magnetic flux shows magnetoresistance oscillations
with the period equal to the superconducting flux quantum
®y=h/2e. The explanation provided by Little and Parks was
that the resistance oscillations AR(H) reflect periodic
changes in the superconducting transition temperature T,
given by AT.=AR(H)(dT/dR). Subsequent studies have
demonstrated periodic changes in the magnetoresistance also
in two-dimensional (2D) networks of superconducting wires
(see Refs. 5 and 6, and references therein). These studies
were focused on determining the arrangements of vortices in
the network and the effects of size and symmetry of the
network on the periodic oscillations.

Magnetoresistance oscillations in a high-T, superconduct-
ing network were first reported by Gammel et al.,” who as-
cribed them to the Little-Parks effect. However, the ampli-
tude of the oscillations and its temperature dependence could
not be accounted for while no attempt was made to analyze
the monotonic background on which the magnetoresistance
oscillations were superimposed.

We have recently demonstrated® large magnetoresistance
oscillations in a network of decoupled 150X 150 nm?
La; g4Srg16CUO, loops and showed that the oscillations am-
plitude is much larger than what one would expect from the
periodic changes in the critical temperature associated with
the Little-Parks effect. We ascribed these oscillations to a
dynamic effect: thermally excited vortices move and interact
with the persistent current induced in the loops by the mag-
netic field. As the induced current oscillates periodically with
the magnetic flux piercing the loops, due to fluxoid quanti-
zation, this interaction is periodic with the applied magnetic
field; this gives rise to the magnetoresistance oscillations.

1098-0121/2010/82(9)/094513(7)
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PACS number(s): 74.78.Na, 74.25.Uv, 74.25.Wx

This effect is especially important in high-T, superconduct-
ors, where the Little-Parks effect is suppressed because of
the relatively small coherence length, while the vortex dy-
namics is enhanced due to relatively large thermal fluctua-
tions. As the size of the loops decreases down to the nano-
scale, the dynamic effect becomes even more significant,
because of an increase in the persistent current induced in the
loops. We have also outlined a theoretical analysis® based on
the fluxoid dynamics model,®%0 that successfully accounts
for the amplitude of the observed magnetoresistance oscilla-
tions and its temperature dependence.

In this paper we present data on smaller La; g,Sry 14CuQO,
loops of size 100 X 100 nm?, almost an order of magnitude
smaller than what has been reported previously for other
high-T, materials. In addition, we extend our theoretical
analysis to include description of the monotonic background
on which the magnetoresistance oscillations are superim-
posed. The analysis of the magnetoresistance background
provides evidence for the presence of both vortices and an-
tivortices in Lag g4Sry16CuO, films at elevated temperatures.
This is consistent with thermal generation of vortex-
antivortex pairs that dissociate above a certain temperature,
the so-called Berezinskii-Kosterlitz-Thouless (BKT) transi-
tion point.! The occurrence of a BKT transition has been
predicted in thin high-T, superconducting films with the lat-
eral dimensions smaller than the perpendicular penetration
depth.'? However, the experimental efforts to observe such a
phase transition in superconductors have so far yielded in-
conclusive results.

. EXPERIMENTAL

An advanced molecular-beam epitaxy system was em-
ployed to synthesize optimally doped La; g4Srg16CuO, films,
26 nm thick, epitaxially on LaSrAlO, substrates polished
perpendicular to the (001) direction.314 The films were char-
acterized in situ by reflection high-energy electron diffrac-
tion, and ex situ by x-ray diffraction, atomic force micros-

©2010 The American Physical Society


Administrator
Typewritten Text
57


SOCHNIKOV et al.

FIG. 1. (Color online) Main panel: schematic description of a
sample consisting of 100x 100 nm? loops (orange color) intercon-
nected by 500 nm long wires (bright bars). Inset: SEM image of a
single loop patterned by electron-beam lithography in a
La; g4Srg16CUO, film. The whole sample contains 60X 60 small
loops.

copy and mutual inductance measurements. Subsequently,
the films were patterned into a 3030 wm? network con-
sisting of 100X 100 nm? square loops with ~25 nm wire
width, separated by 500500 nm? loops, as shown sche-
matically in Fig. 1. We note that the size of the loops and the
wire width in the present experiment are nearly an order of
magnitude smaller than previously studied in high-T, net-
works and rings.”>71% In this specially designed network the
small loops do not share sides, thus eliminating complica-
tions that may arise in simple networks (e.g., a square net-
work), such as vortex interaction and frustration or intersti-
tial vortices trapped in the wires.>"15-18 Simulations?® show
that the decoupling of the small loops improves as the ratio
between the sides of the large and the small loops increases.
In the present network we achieved a ratio of 5:1 as com-
pared to about 3:1 in our previous published work.8 In such a
network, the behavior of the small loops approximates that
of an ensemble of isolated loops, thus reflecting the behavior
of a single loop. Nevertheless, this decoupled network has an
advantage over a single loop as it allows application of larger
currents, thus improving the signal-to-noise ratio. In addi-
tion, measurements on large number of loops in the network
average effects of inhomogeneities and size distribution.

The network pattern of Fig. 1 was created using a
CRESTEC Cable-9000C high resolution e-beam lithography
system in a layer of poly(methyl methacrylate) (PMMA) re-
sist spun-off on top of a superconducting La; g4Srq1§CUO,
film. This PMMA pattern served as a mask for transferring
the pattern to the superconducting film by Ar-ion milling.
The scanning electron microscope (SEM) image in the inset
shows a detail (a single loop) of the resulting superconduct-
ing network. The network magnetoresistance was measured
using a Quantum Design physical properties measurement
system. The magnetic field was applied normal to the film
surface (the a-b crystallographic plane) and the bias current
was 1 uA.

Figure 2 shows measurements of the network resistance
R(T) at zero field as a function of temperature before (closed
circles) and after (open circles) patterning. Evidently, pat-
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FIG. 2. (Color online) Measured temperature dependence of the
resistance in a continuous film (solid circles, the dotted line is a
guide to the eyes) and the patterned film (open circles) at zero
applied field. The solid blue line is calculated using Eq. (5) with
T.=32 K and R,=76 Q yielding fit values A\g=750 nm, &
=2.5 nm, d=23.4 nm, and w=21 nm. The red dashed line is based
on the Halperin-Nelson formula for a 2D superconductor (Ref. 21)
using the Berezinski-Kosterlitz-Thouless transition temperature,
Tgk7=27.6 K, the fluctuation-corrected BCS critical temperature,
TBCS:32 K, and Rn=76 Q.

terning of the film into narrow wires causes broadening of
the resistive transition. In the following we show that this
broadening can be interpreted as the result of a decrease in
energy required to create a vortex/antivortex pair as the wire
width decreases. Figure 2 also shows an anomalous peak in
R(T) of the patterned film near T.. A similar peak was ob-
served previously in superconducting nanostructures and its
origin is still debated.?>-2*

Figure 3 shows the network magnetoresistance measured
at different temperatures between 27 and 32 K. The mea-
sured magnetoresistance exhibits large oscillations superim-
posed on a monotonic background. The temperature up to
which the oscillations persist, which in what follows we de-
fine as the transition temperature, T, is ~32 K. The oscil-
lation amplitude decreases as the field increases. At tempera-
tures above ~32 K, R(H) exhibits an anomalous shape, the
magnetoresistance is decreasing with the field (negative
magnetoresistance).?®> The period of the oscillations, Hg
~2300 Oe, corresponds to the magnetic flux quantum, Hg
=dy/7r?, where r=52.8 nm is the effective radius of the

440 30 20 -10 0 10 20 30 40
H (kOe)

FIG. 3. Resistance of the patterned film as a function of mag-
netic field perpendicular to the sample plane (i.e., parallel to the
c-crystallographic axis) at different temperatures. The lowest and
the uppermost curves correspond to 27 K and 32 K, respectively.
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FIG. 4. Temperature dependence of the measured oscillation
amplitude (circles). The solid line is calculated using Eq. (7) with
the parameters extracted from Fig. 2. The triangles show an upper
limit for the resistance oscillations amplitude calculated for the
Little-Parks effect; note that this scale is expanded tenfold.

small loop. Oscillations of the period ~80 Oe corresponding
to the large loops are also observed but on the scale of Fig. 3
their amplitude is too small to be noticed. In Fig. 4, the
circles show the measured temperature dependence of the
oscillations amplitude. Evidently, the magnetoresistance os-
cillations are observed only within a limited temperature
range around the transition, exhibiting the maximum ampli-
tude around 29.5 K.

1. THEORETICAL MODEL AND DISCUSSION

The magnetoresistance oscillations shown in Fig. 3 at the
first sight resemble the Little-Parks effect?2 originating from
the periodic dependence of the critical temperature, T, on
the applied magnetic field. However, this resemblance is de-
ceptive. For an estimate, let us take as the typical? value of
the coherence length, &=2 nm, the critical temperature in
zero field at the onset of the resistance drop, T.=32 K, and
the loop effective radius r=[®,/(7Hy)]¥?>=52.8 nm; using
these parameter values for the amplitude of oscillations in T,
one obtains™?" ATLP=0.14T(&/r)?~6.4 mK. From this
AT'C'P we can calculate an upper limit to the resistance oscil-
lations amplitude, AR=AT:P(dR/dT), shown by the triangles
in Fig. 4. Evidently, AR expected from the Little-Parks effect
exhibits the maximum value which is a factor of ~50
smaller than the maximum value measured in our experi-
ment. Moreover, attributing the data shown in Fig. 3 to the
Little-Parks effect leads to the illogical conclusion that ATS”
would be temperature dependent. This is shown in Fig. 5,
where the solid points were calculated from the experimen-
tally measured oscillation amplitude, AR, and the tempera-
ture derivative dR/dT, using AT.=AR/(dR/dT). Note that
the extracted AT, exhibits unexpected temperature depen-
dence with values that are two orders of magnitude larger
than the constant value of about 6.4 mK (the solid line in
Fig. 5).%8

Given that the Little-Parks effect cannot explain the ob-
served giant magnetoresistance oscillations, one needs to
look for alternative explanations. We conjecture that the ori-
gin of this phenomenon may be in drastically modified vor-
tex dynamics in nanopatterned films. While in continuous
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FIG. 5. (Color online) Solid circles: the amplitude of oscilla-
tions in T, AT.=AR(H)(dT/dR), derived from the experimentally
measured oscillation amplitude, AR, and the temperature derivative
dR/dT. The solid black line connecting the experimental points is a
guide to the eyes. The solid blue line presents the change in T,
ATEP, that one would expect from the Little-Parks effect. Note that
the two scales differ by 2 orders of magnitude.

films the activation energy for vortex creep usually decreases
monotonically with the applied magnetic field,>*-3 in nano-
patterned films this activation energy becomes oscillatory,
since moving vortices interact with the current induced in
nanoloops, and this current is a periodic function of the field
strength. Periodicity of the induced current results directly
from the fluxoid quantization~32" which is also the cause of
the Little-Parks effect. The fluxoid, consisting of the flux
induced by the supercurrent in the loop and by the external
magnetic field, is characterized by the quantum vorticity
number, N, which defines the energy state of the supercon-
ducting loop. In the lowest energy state, N is equal*?’ to
H/Hg rounded to the nearest integer. Thermally induced vor-
tices or antivortices cause fluxoid transitions from the equi-
librium quantum state, N, to a higher energy state. Kirtley et
al.? and Kogan et al.,'? in their analysis of magnetic scanning
microscope measurements of mesoscopic superconducting
rings, calculated the energies AE;, and AE,, that are re-
quired to create a vortex (+) or an antivortex (=) in a super-
conducting wire forming a loop and to carry it into or outside
of the loop hole, respectively,

AE; =E,(T) + Eo(T)(N-H/Hy + 1/2) + uH,

AEi —

out

E,(T)+Ey(TY(N=-H/Ho—-1/2) ¥ uH. (1)

The first term in Eq. (1), E,, is field independent and
represents the energy needed for creation of the vortex/
antivortex in a ring with annulus width w. For our rings with
r/w>1/2 we can use EU=(I>§ In[2w/ 7&(T)]/87A(T). Here,
&T)=0.74&,(1-T/ T V2 is the Ginzburg-Landau coherence
length™ and A(T)=2\(T)?/d the Pearl penetration depth'!32
in a film of thickness d and with the London penetration
depth™ N(T)=\[1-(T/ T2 Y2

The second term in Eq. (1) is periodic with the field,
expressing the interaction of a vortex or an antivortex with
the current associated with the fluxoid in terms of the energy
E,. For our rings we use EO:CD(Z) In[(r+w/2)/(r
-w/2)]/87A(T). The quantized values of N lead to periodi-
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cally oscillating values of (N—H/Hg). The third term in Eq.
(1) is the energy of the magnetic dipole moment, w(T)
=dyw?/327A(T), associated with a vortex or an
antivortex.>®

As fluxoid transitions of higher order, N— N+m with
|[m|=2, are statistically less significant, we consider fluxoid
transitions accomplished by only one vortex or antivortex
entry or exit. Thermodynamic averaging over the above four
types of excitation energies, AEJ, yields an effective potential
barrier, (AE),

> e AEl/KkgT
iein,out

(AE)= S AEle2E/keT 2)
iein,out

je+- je+-

Using Eqg. (1) one obtains

Eo(N - H/HO)]

(AE(T,H))=E, +Ey/2 - Eo(N - H/Ho)tanh{ T
B

ﬂ)
keT
=~ Ev - Eo(N - H/Ho)tanh

Eo(N-H/H H
x{u} - uH tanh(’u—>.
ke T

kgT

In the approximations made in Eq. (3) we assumed that
E, > E,, which is especially valid for narrow rings, r>w.
The first term in Eq. (3), E,(T), describes the zero-field ex-
citation energy as a function of temperature, since the other
two terms vanish at zero magnetic field. The second term
describes the periodic part and the third term is responsible
for the monotonic field-dependent “background” (see Fig. 3).
Note that in this model E,, Ey, and n depend only on tem-
perature.

In the next step, we derive the magnetoresistance follow-
ing Tinkham’s approach in his analysis?® of the resistive tran-
sition in high-T, superconductors. Replacing the activation
energy in his equations with (AE) as given in Eq. (3) yields

=l
R, | "\2kgT/]
where |q is the zero-order modified Bessel function of the
first kind. In the following, we show that Eq. (4) in conjunc-
tion with Eq. (3) can explain a rich variety of phenomena,
including the observed transition broadening, the oscillations
of magnetoresistance, the temperature dependence of the os-
cillation amplitude, and the shape of the monotonic back-
ground on which the magnetoresistance oscillations are su-
perimposed.

Equations (1)—(4) are applicable to a single loop of radius
r and can also apply to a wire for which r — . In applying
these equations to a network of decoupled loops intercon-
nected by relatively long wires (see Fig. 1), we note that the
total resistance of such a network is R=RI°P+R""¢ where
R'°%P and R"® are the resistances of a small loop and of a
single interconnecting wire, respectively. Expressions for
R'°P and R""® can be obtained on the basis of Eq. (4),

- uH tanh(

@)

R

(4)
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i)

(®)

where (AE'°°P) and (AE“'"®) are given in Eq. (3) by including
and omitting the E, term, respectively. (The term E, is re-
sponsible for the oscillations that are absent in the wires.)
For the network described in Fig. 1, RI°P and R""® are 22%
and 78%, respectively, of the measured R,=76 Q at T,
=32 K, reflecting the relative lengths of the short and the
long wires in the network.

< A Eloop>
2ksT

<AEwire>

B

A. Transition broadening at zero field

The solid blue line in Fig. 2 shows a fit to the data points
of the resistance in a patterned film in the transition region,
using Eq. (5) in the zero-field limit. Note that in this limit
(AE'°P) and (AE"'®) reduce to E,(T). This fit yields d
=234 nm, w=21 nm, T.,=32 K, R,=76 Q, A\y=750 nm,
and &=2.5 nm. The calculated resistance is in a reasonably
good agreement with the experimental data, indicating that
the transition broadening is primarily due to enhanced vortex
motion across narrow wires due to reduced E,. Equation (5)
does not account for the anomalous resistive peak observed
at elevated temperatures. A similar peak was observed in
other superconducting nanostructures®-2* but its origin is
still controversial.

The dashed line in Fig. 2 shows an attempt to fit the
resistance data of the patterned film to the Halperin-Nelson
formula for 2D superconductors, based on vortex-antivortex
unbinding.?! In the calculation of this curve we assumed a
BKT transition temperature, Tgkr=27.5 K, and the
“fluctuation-corrected BCS critical temperature,” Tgcg
=32 K. Apparently, this model does not account for the tem-
perature dependence of the magnetoresistance measured in
our nanoloops except for a limited temperature range in the
immediate vicinity of ~27.5 K. At higher temperatures the
Halperin-Nelson formula describes “fluctuation-corrected
BCS behavior,” which does not explain our results.

B. Oscillations amplitude—temper ature dependence

As the origin of the oscillations is in the small loops, in
the following we derive an expression for the oscillations
amplitude based on Eq. (3). We apply this equation for low
fields such that the term —uH tanh(uH/kgT) in the excitation
energy [Eq. (3)] is small compared to E,. Using the approxi-
mation tanh[Eq(N-H/Hg)/ksT]=~Ey(N-H/Hg)/kgT in the
periodic term, one obtains

REn ~ [1o{E,/2kgT = [Eg(N = H/Ho)/kgTI?/2}]72,  (6)
which is an oscillating function of the magnetic field.

One can approximate the amplitude of the oscillations,
AR(T), as the difference between the zero-field curve,
R(T,H=0), and the shifted resistance curve R(T,H=H;/2).
If the difference is relatively small, AR can be approximated
as

094513-4

60


Administrator
Typewritten Text
60


OSCILLATORY MAGNETORESISTANCE IN...

Measured

607 Calculated (Eqs. 384)
554 —— Calculated (including size distribution)
50,
. 45+
E 40+
351
30+
251
-10 0 10
H (kOe)

FIG. 6. Magnetoresistance oscillations at 29.5 K: measured
(open circles) and calculated using Eq. (5) (the solid gray line). The
solid black line is calculated with the same equations but assuming
a size distribution of the loops, resulting in the spread of =8% in
Ho around the mean value of ~2300 Oe.

dR
AR= ———
d<E> H=0

E, |?
2kBT]' @)

where AE is the amplitude of periodic change in the excita-
tion energy with the field and 1, is the first-order modified
Bessel function of the first kind. This equation, which was
derived for a single loop, is also valid for the network if we
replace R, with RI°°P, because the origin of oscillations is in
the small loops.

We note that E, and E, are functions of two length scales,
N\o and &, The calculated amplitude, using Eq. (7) with A
=750 nm, &=2.5 nm, r=52.8 nm, d=23.4 nm, and w
=21 nm, is shown as the solid line in Fig. 4. A fairly good
agreement between the experimental data and the theoretical
curve is obtained. We note that the values of the parameters
Ng and & may be influenced by the lithography process,
which may cause damage in regions near the surface and
sides and make the effective thickness and width signifi-
cantly smaller than the nominal values.

It should be mentioned that an earlier work has found
large-amplitude magnetoresistance oscillations in a different
nanostructure made of two low-T; superconducting
nanowires.®*% These oscillations were attributed to the field-
driven modulation of barrier heights for phase slips. As that
interpretation relates to one-dimensional superconducting
wires (W< ¢), it may not be directly applicable to our high-T,
loops in which the wire width is an order of magnitude larger
than the coherence length.

_14(E,/2KgT) {
T ME,2kg T
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(a)

-20

-10 10

0
H (kOe)

H(kOe)

FIG. 7. (Color online) Theoretical fits of the nonoscillating
background (the line connecting the minima of the oscillatory mag-
netoresistance) to the experimental data (black lines) taking into
account (a) only vortices (left panel, red lines) and (b) both vortices
and antivortices (right panel, blue lines).

C. Magnetoresistance oscillations—field dependence

Figure 6 shows a comparison of the field dependence of
magnetoresistance measured at 29.5 K (open circles) with
the one calculated using Eq. (5) (the solid gray line) and
taking E, =94 and E;=72 in the units of kg and =28 in the
units of kg/T. A good agreement between the calculated
curve and the experimental data is seen only at low fields. As
the field increases, the experimentally measured amplitude
decreases while the calculated amplitude remains almost
constant. The agreement between the theory and the experi-
ment can be extended to high fields if we take into account
the distribution of the size of loops in the patterned film. As
loops of different size give different period of oscillations,
averaging over a size distribution of the small loops causes a
decrease in the oscillations amplitude. We can account for
this size spread assuming an equal-size distribution of 8%
around the median value of 52.8 nm and then average over
the contributions to R(H) from loops of different sizes. This
procedure yields a good fit (the solid black curve in Fig. 6)
over a large field range.

It should be noted that a decay of the magnetoresistance
oscillations at high fields was observed not only in
networks®>’ but also in low-T, cylinders®* and, more re-
cently, in a high-T, superconducting single ring.!® The latter
observation may be ascribed to variation in the order param-
eter along the radial direction across the relatively wide ring
(270-300 nm), creating a discrete number of concentric in-
dependent domains where supercurrent density is different
from zero.X® In low-T, cylinders®* the oscillations originate
from the Little-Parks effect, i.e., from the changes in T, with
field. The resulting magnetoresistance changes are propor-
tional to dR/dT which decreases as the field increases.

TABLE |. The values of E, and u at different temperatures.

T E, )% nl2kgT
(K) (K) (KIT) E,/2kgT (UT)
30 63 21 11 0.4
29.5 93.5 30 1.6 0.5 }< 1
29 134 4 2.3 0.7
28 243 77 4.3 1.4 1>1
27 349 104 6.5 1.9
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FIG. 8. (Color online) The calculated probabilities of thermally
induced creation of a vortex (solid lines) and an antivortex (thin
solid lines) as functions of the magnetic field.

D. Monotonic field background

We define the background as the line connecting the
minima points of the oscillatory magnetoresistance. Thus, in
calculating the background, the periodic term included in
(AE'®P) of Eq. (5) is neglected as it takes zero value at fields
mH, with integer m. Assuming that only vortices are present
in the system the resistance would be

Rbackgr = Rlnoop{lo[(EO - l‘L|H|)/(2kBT)]}_2
+ Ryl o[~ uH|/(2kgT) ]} 2. )

In the presence of both vortices and antivortices, u|H| in Eq.
(8) has to be replaced by wH tanh(uH/kgT). Two fits of
expression (8) to the experimental data at different tempera-
tures are shown in Figs. 7(a) and 7(b), the first assuming the
presence of vortices alone and the second assuming the pres-
ence of both vortices and antivortices. It can be seen clearly
that taking into account only vortices fails to explain the
background at temperatures above ~28.5 K while taking
into account both vortices and antivortices provides a much
better description of the experimental results.

The fits shown in Fig. 7(b) yield the values of E, and u at
different temperatures listed in Table I. These values de-
crease with temperature as predicted in Ref. 33 and are of
same order of magnitude as the calculated values of E,
=d3 In[2w/ 7&(T)]/872A(T) and u(T)=dow?/327A(T).

The need to account for antivortices in explaining the
magnetoresistance background at high temperatures becomes
apparent by considering the probabilities Py, and Pay of ther-
mally excited vortex and antivortex in a superconducting
wire. These can be expressed as Py(T,H)oxexp[-(Ey
- ulH)/kgT] and  Pay(T,H)<exp[—(Ey+ u|H|)/kgT], re-
spectively. In Fig. 8 we show the calculated Py, and P4y as a
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function of temperature for different fields. From these
curves it is clear that at high magnetic fields the probability
of antivortices is highly suppressed. However, at sufficiently
high temperatures antivortices occur with a relatively high
probability even at high fields.

IV. SUMMARY AND CONCLUSIONS

In uniform (unpatterned) films the activation energy for
vortex creep usually decreases monotonically with the ap-
plied magnetic field.?>-! In contrast, in films nanopatterned
into a network of loops, this activation energy becomes os-
cillatory, because moving vortices interact with the periodi-
cally oscillating current induced in the loops. The activation
energy also includes a term that varies monotonically with
the applied field because of magnetic interaction of vortices
and antivortices with the applied field. The combination of
monotonic and oscillatory terms of the activation energy
gives rise to magnetoresistance oscillations superimposed on
a monotonically increasing background. On the basis of this
model, we have derived analytical expressions for the mag-
netoresistance oscillations and for the background and
showed good quantitative agreement with the experimental
results obtained from an array of noninteracting nanosized
loops in a Laj g4Srg1CuO, film.

In analyzing the monotonic background of magnetoresis-
tance we showed that it is necessary to account for the pres-
ence in the film of antivortices alongside with vortices, es-
pecially at elevated temperatures. This finding may have an
implication on the debated BKT transition, which predicts
dissociation of vortex-antivortex pairs above the transition
temperature in thin superconducting films. Further study of
the possibility of manifestation of Berezinskii-Kosterlitz-
Thouless transition in our experiment requires an extension
of our analysis to include the contribution of vortex-
(anti)vortex interactions to the activation energy.
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4 SUMMARY AND CONCLUSIONS

In this work, we designed and fabricated a new type of a network — the
double network — consisting of two interlaced sub-networks of small and large
loops. We demonstrated, both theoretically and experimentally, uncorrelated
behavior of fluxoids in the sub-network of the small loops. Namely, the vortex
occupation of the small loops increases in steps, resembling the behavior of an
ensemble of nearly decoupled loops. In addition, the loop energy is a periodic
function of the ratio between the flux penetrating a loop and a superconducting
flux quantum, with a waveform identical to that of a single isolated loop.

Measurements of the magnetoresistance of double networks made of
MBE grown Laj.g4Sro.16CuQy4 film, with a small loop side ranging typically from
150 to 75 nm, revealed large oscillations with flux periodicity hc/2e and
amplitude much larger than expected from the Little-Parks effect. Also, the
temperature dependence of the oscillations' amplitude was inconsistent with
the Little-Parks prediction.

To explain our experimental results, we developed a new model which
ascribes the magnetoresistance oscillations in high-7, superconductors to the
periodic changes in the interaction between thermally excited moving vortices
and the oscillating persistent current induced in the loops. We found a good
agreement between the experimental results and the predictions of this fluxoid
dynamic model for both the size of oscillations' amplitude and its temperature
dependence. We note that although, in general, magnetoresistance
oscillations originate from both the Little-Parks effect and the fluxoid dynamics,
in high-T. superconductors the contribution of the Little-Parks effect is relatively
small because of the short coherence length. On the other hand, the
contribution of the vortex dynamics is large in high-T. superconductors due to
the strong thermal fluctuations.

We extended our dynamic model to include the interaction between the
external field and the magnetic moment of the vortices and antivortices. The
extended model accounts quantitatively for the monotonic background on
which the magnetoresistance oscillations are superimposed. Moreover, an
analysis of the background indicates that in the patterned film both vortices
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and antivortices are present, consistent with the superconducting phase
transition scenario proposed by Berezinskii, Kosterlitz, and Thouless.

The double network may serve as an efficient tool in the search for the
recently predicted hc/4e and hc/e periodicities [34-39]. The absence of such
periodicities in the present work is at variance with these theoretical
predictions. However, efforts to discover these periodicities should continue by
extending this work to higher and lower doping across the entire phase
diagram, in La,.xSryCuO4 and Laz.\BasCuO4 [52].
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