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ABSTRACT

This work describes a study of fluxoid quantization effects in a novel type 

of superconducting network, consisting of two interlaced sub-networks of 

small and large loops. The motivation for designing such a network was to 

create an array of decoupled small loops that behave like isolated single 

loops. We fabricated such 'double' networks from atomically smooth 

Molecular Beam Epitaxilly grown La1.84Sr0.16CuO4 films. High resolution 

electron-beam lithography was used to prepare a pattern of thousands of 

loops made of ~30 nanometer-wide wires with a loop side of down to 75 nm, 

the smallest high-temperature superconducting loops prepared to date. 

Our theoretical study, based on computer simulations and mean-field 

calculations, showed different behavior for the sub-networks of the large and 

small loops in the double network. In particular, while the occupation of the 

large loops by fluxons grows linearly with the external magnetic field, the 

occupation of the small loops grows in steps, similar to the occupation of a 

single loop. Furthermore, the calculations showed that the field dependent 

energy of the sub-network of small loops is similar to that of an isolated single 

loop. We observed features characterizing single loops also experimentally, in 

measurements of the magnetoresistance of La1.84Sr0.16CuO4 double networks.  

The magnetoresistance measurements revealed periodic oscillations with 

a periodicity corresponding to magnetic flux quanta, ehc 2/0 =Φ (h  is the 

Planck constant, c  is the speed of light in a vacuum and e  is the electron's 

charge), as in the Little-Parks effect. However, the amplitude of the 

oscillations was found to be larger by almost two orders of magnitude than the 

amplitude expected from the Little-Parks effect. Moreover, the temperature 

dependence of the oscillations' amplitude was at variance with the Little-Parks 

predictions. We, therefore, proposed a new model for these oscillations. 

The essence of our model is that the resistance results from thermally 

activated hopping of vortices across the loops, and the oscillations of the 

resistance are caused by periodic changes in the activation energy required 

for a vortex hopping. The periodic changes in the activation energy result from 
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the interaction of vortices with fluxoid currents in the loop, which are periodic 

functions of the magnetic field. We found an excellent agreement between the 

experimental results and the theoretical predictions of our dynamic model for 

both the oscillations' amplitude and its temperature dependence.  

To explain the monotonically increasing background on which the 

magnetoresistance oscillations are superimposed, we extended the dynamic 

model to include the interaction of vortices and antivortices with the external 

field. A good fit between the theoretical predictions and the measured 

background was found, revealing the existence of both vortices and 

antivortices with comparable probabilities near the transition temperature. 

This finding is consistent with the occurrence of Berezinskii-Kosterlitz-

Thouless transition in La1.84Sr0.16CuO4 films. 

Double networks comprising nano-loops of high-Tc superconducting 

materials, can serve as an effective tool in the search for the recently 

predicted ehc 4/2/0 =Φ  and ehc /2 0 =Φ
 

flux periodicities in both striped 

superconductors and in superconductors with d -wave symmetry of the wave 

function of Cooper pairs, respectively. These networks offer large 

magnetoresistance oscillations and a large signal to noise ratio. Efforts to 

discover such periodicities should continue by extending this work to higher 

and lower doping across  the  entire  phase  diagram, in La2-xSrxCuO4 and 

La2-xBaxCuO4 nanoloops. 
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1 INTRODUCTION

1.1 FLUXOID QUANTIZATION AND EARLY EXPERIMENTAL OBSERVATIONS OF 

MAGNETORESISTANCE OSCILLATIONS IN MULTIPLY CONNECTED LOW 

TEMPERATURE SUPERCONDUCTORS 

Fritz London introduced the concept of fluxoid in multiply connected 

superconductors as a sum of total magnetic flux, Φ , through the 

superconductor and an integral of the supercurrent, J
r
 , around an opening (a 

hole) in the superconductor [1]: 

 
∫ ⋅+Φ=Φ sdJ

c

rr
2)

4
(' λ
π

, 
(1) 

where c  is the speed of light, λ  is the magnetic field penetration depth [1,2] 

and sd
r

 is the infinitesimal element of a path around the opening in the 

superconductor. London showed that the fluxoid may have only discrete 

values, and is quantized in units of superconducting flux quantum, 0Φ : 
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where n  is integer, h  is the Planck constant, c  is the speed of light and e2  is 

the charge of a pair of electrons (Cooper pair). 

In transport measurements, the resistance is typically detected near 

the critical temperature of a superconductor. Therefore, the screening of the 

external magnetic field is very weak, and the total flux Φ  through the 

superconductor approximately equals the externally applied magnetic flux 

aΦ . Using this assumption, with Eq. (1) and (2), we may express the 

supercurrent surrounding a hole in a ring-shaped superconductor (see Figure 

1) as 
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where rL π2=  is the loop circumference, and r  is the loops radius. The 

integer number, n , called the winding number, counts fluxons inside the 
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superconducting loop. This term is used to describe the magnetic quasi-

particles associated with a circulating current, and a flux enclosed by this 

current.  

Due to the induced supercurrent, the energy of the superconducting 

loops will acquire a shift proportional to the kinetic energy of the circulating 

Cooper pairs, which is proportional to the square of the supercurrent 

 
2

2

2
4

J
c

Ek

πλ
= . 

(4) 

At the lowest energy level, the number of fluxons changes in a 

stepwise form as shown in Figure 1a. According to Eq. (3), the current will 

change periodically with the magnetic flux (see Figure 1b). And, as defined in 

Eq. (4), the energy proportional to the squared current has magnetic flux 

dependence in the form of multiple parabolas replicated with periodicity of 0Φ  

(see Figure 1c). 

In the square network of loops, the fluxoid quantization (Eq. (1)) has to 

be satisfied for every loop: in each cell there may be a different number of 

vortices, n , and a different current in every side of every loop. Solving the set 

of fluxoid equations together with the requirement for minimal energy, shows 

[3-6] that the number of vortices in the network grows linearly with the field – 

completely different from the stepwise population of a single loop.  

We show in this work that in contrast to the square network, in the 

specially designed double network consisting of two interlaced sub-networks 

of small and large loops (introduced in Section 2), the small loops are 

occupied by fluxons in steps, closely resembling the behavior a single loop.  
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Figure 1. Population of fluxons (a), supercurrent (b), and kinetic energy of the 

supercurrent (c) in a superconducting loop (left schematic drawing), as a function of 

magnetic flux piercing the loop, expressed in units of the flux quantum. 

The additional energy, 
k

E , of the fluxoid currents defined in Eq. (4) will 

suppress periodically the critical temperature, cT , of a superconducting. This 

effect was first observed experimentally by Little and Parks [7-9].  They 

demonstrated that a thin-walled superconducting tin cylinder pierced by a 

magnetic flux shows magnetoresistance oscillations with the period equal to 

the superconducting flux quantum ehc 2/0 =Φ  (see the left panel of Figure 2). 

Little and Parks associated the resistance oscillations )(HR∆ with periodic 

changes cT∆  (see the right panel of Figure 2) in the superconducting 

transition temperature cT , )/( dTdRTR c∆=∆ . The amplitude of the oscillations, 

cT∆ , scales with 2

0 )/( rξ , where 0ξ  is the zero-temperature coherence length, 

and r  is the radius of the cylinder. 
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Figure 2. Left panel: Resistance of the tin cylinder as a function of magnetic flux. 

Right panel: Schematic plot of resistance versus temperature: interpretation of 

changes in the critical temperature reflected as changes in the resistance [7-9]. 

Fluxoid quantization effects were studied in many works on 

microscopic and mesoscopic multiply connected structures made of 

conventional superconductors: oscillatory behavior was observed in 

resistance and magnetization of single loops [10-19], different types of 

networks [3-5,20,21], arrays of Josephson junctions (see for example ref. [22-

24]), and more complex structures [25,26]. A review of all the works is far 

beyond the scope of this thesis. Yet, as we show in the next section, only a 

few works describe fluxoid quantization effects in loops made of high 

temperature superconductors [27-29].  
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1.2 EXPERIMENTAL OBSERVATION OF MAGNETORESISTANCE OSCILLATIONS IN HIGH-

TEMPERATURE SUPERCONDUCTORS

In 1990, Gammel et al. [27] reported magnetoresistance oscillations in a 

network of ~ 2 µm square loops made of YBa2Cu3O7-δ (see image of the 

network in Figure 3, left panel) and attributed these oscillations  to the 

oscillations in the critical temperature, i.e. the Little-Parks effect. However, the 

amplitude of the oscillations and its temperature dependence in their 

experiment could not be accounted for. As 0ξ  in high-
c

T  superconductors is 

relatively small (several nm), ( )20 / rTT cc ξ∝∆  is expected to be in the sub mK 

range even for micron-size high temperature superconducting loops. The 

Little-Parks magnetoresistance oscillations, )/( dTdRTR c∆=∆ , in high- cT  

superconductors is, therefore, expected to be very small. Gammel et al. 

observed much larger oscillations, as demonstrated in the right panel of in 

Figure 3. In addition cT∆  depends on T , as shown in the left panel of Figure 

3. This finding is also inconsistent with the expected constant amplitude of the 

changes in the critical temperature in the Little-Parks effect. The large 

amplitude and the temperature dependence of cT∆  remain open questions.  

T (K)

∆
T

c
(a

.u
.)

 

∆
T

c
(m

K
)

H (Oe)
 

Figure 3. Left panel: Amplitude of the oscillations in the 'critical temperature', as a 

function of temperature measured in the YBCO square network, shown in the inset 

(the scale bar is 20 µm). Right panel: oscillations in the 'critical temperature' derived 

from the measured magnetoresistance oscillations in the YBCO network, as a 

function of the magnetic field [27]. 
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The configuration of the square network in the work of Gammel et al. 

exhibits an intrinsic disadvantage due to the fact that the squares share sides. 

This configuration results in interactions between the loops [3-5,20,21], which 

may complicate the analysis of the results. This problem may be solved by 

fabricating single rings, as was recently demonstrated by Carillo et al. [29]. 

They performed magneto-transport measurements on submicron YBCO high 

temperature superconducting single loops with an outer diameter of about 1 

µm (Figure 4a). The observed oscillations (Figure 4b) have an amplitude 

larger than expected from the Little-Park effect (Figure 4c). However, the 

frequency was difficult to define due to multiple frequencies present in the 

oscillations (Figure 4d). The authors explained the large amplitude and multi-

frequency oscillations in terms of non-uniform vorticity: supercurrent density 

varies in a radial direction forming concentric domains with a separation of ~ 

30 nm within the ring arms.  

 

 

 

(a) (b) (c) 

(d) 

 

Figure 4. (a) An example of a single ring of YBCO measured by Carillo et al.; (b) 

oscillations in the magnetoresistance measured at 70 K in YBCO single ring; (c) 

oscillations in the critical temperature derived from the magnetoresistance; (d) 

Fourier transform showing the multiple 'frequencies' of the oscillations in the 

magnetoresistance [29].  

Although a single loop configuration used in the above experiment has 

advantages over a square network, such as simplicity in the analysis, the 
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single loop configuration presents significant disadvantages: in a single ring, 

the signal-to-noise ratio is typically low; variations from loop to loop may 

introduce a need for the statistical measurement of a large number of single 

loops, which may be impractical. Therefore, in some cases the single loop 

geometry may not be the optimal choice.  

In this work, we exploit the advantages of the two approaches, networks 

and single loops, by fabricating a specially designed double network, 

overcoming the disadvantages of each of the two approaches: in this network, 

the loops behave similarly to an ensemble of independent loops, making the 

system simple to analyze; measuring many loops in the network averages 

over a sample inhomogeneity and significantly increases the signal-to-noise 

ratio.  

The open questions, mentioned above in the context of the work by 

Gammel et al., partially motivated the current study. We show here that both 

the amplitude and the temperature dependence can be accounted for in a 

dynamic model. This model takes into account the hopping of Abrikosov 

vortices/anti-vortices into or out of loops, while taking into account the 

interaction of these Abrikosov vortices with fluxoid currents circulating around 

loop. 

The periodicity of the oscillations is an additional characteristic of the 

behavior of superconducting loops that is important for the analysis of wave 

function symmetry and mechanisms of superconductivity. Several recent 

theoretical works have predicted unusual, exotic fluxoid periodicities in high 

temperature superconducting nanoloops, as described in the following 

section.  
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1.3 THEORETICAL PREDICTIONS FOR HALF FLUX QUANTUM AND TWO FLUX QUANTA 

PERIODICITIES 

The nature of the pairing mechanism and the symmetry of the order 

parameter are among the most important, yet unresolved issues in the field of 

unconventional superconductivity [30,31]. The explanation of intriguing 

phenomena such as a gap opening in the excitation spectra of electrons at 

temperatures above the superconducting transition in these materials are 

closely connected to these fundamental questions [32]. These issues were 

mainly addressed in cuprates materials, but the newly discovered iron based 

superconductors demonstrate that the nature of superconductivity at elevated 

temperatures is probably even more complex [33]. The experimental studies 

of superconducting properties are affected in many cases by artifacts arising 

from experimental limitations such as surface quality, contact resistance, edge 

roughness, and crystal quality. The magnetic fluxoid quantization in multiply 

connected superconducting structures is robust, unaffected by such artifacts. 

Several groups predicted recently that an 'exotic' flux periodicity with a 

period of ehc /2 0 =Φ  will emerge in nano-scale loops of superconductors with 

d-wave symmetry and other unconventional superconductors with nodes 

(zeros) in the energy gap [34-38]. These works show that at a magnetic flux 

around )12(0 +⋅Φ m , m  is integer, there is a paramagnetic quasi-particle-like 

contribution to the circulating current in a loop. This contribution enhances the 

magnetic field, resulting in an energy gain and reconstruction of the 

superconducting condensate. Consequently, the total energy and other 

physical properties of the loop will possess periodicity of 
02Φ  with a magnetic 

flux. As seen Figure 5, the persistent current slope is larger at fluxes 

around )12(0 +⋅Φ m  than at fluxes around )2(0 m⋅Φ . Parabolas of the energy 

which is roughly proportional to the square of the persistent current are 

elevated at values of )12(0 +⋅Φ m  (compare to the classical calculations 

shown in Section  1.1, Figure 1). However, the 
02Φ  periodicity is only a small 

component on top of the dominant 
0Φ  periodicity. The size of a loop must be 
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small for the effect to be clearly observed. In this work, we have been able to 

fabricate and measure flux periodicity in the loops of ~ 35 nm in radius.  

 

Figure 5. Energy and persistent current in a small loop of a hypothetical 

superconductor with zeros in the energy gap, as a function of the magnetic flux 

threading the loop [36]. 

Another theoretical prediction was made for flux periodicity of 

ehc 4/2/0 =Φ , in superconductors that exhibit striped form the order 

parameter [39]. This work predicts that in loops formed from a striped 

superconductor [40], the movement of Cooper pairs is dramatically 

suppressed, due to the perpendicular orientation of stripes between the layers 

of the superconductor. However, dislocations in the striped structure may 

permit transfer of the charge 4e, leading to 2/4/ 0Φ=ehc  periodicity. In this 

work, we analyze the magnetoresistance of the nanoloops to search for 

ehc 4/  and ehc /  periodicities.  

Another fundamental issue in the field of high temperature 

superconductivity is the mechanism responsible for the transition to the 
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normal state. One of the possible scenarios is the Berezinskii-Kosterlitz-

Thouless (BKT) transition, that is addressed in the following section.  

1.4 BEREZINSKII-KOSTERLITZ-THOULESS TRANSITION

The Berezinskii-Kosterlitz-Thouless (BKT) transition [41-43] is one of the 

possible scenarios of the phase transition from the superconducting state to 

the normal state in two-dimensional superconductors (thin film) [44,45]. In this 

scenario, pairs of Abrikosov vortices and antivortices are created in the 

superconductor [2]. At low temperatures, vortex and antivortex bind in a pair 

by an electromagnetic attractive force. At these low temperatures, the external 

current cannot move a pair as the net Lorenz force applied on the pair is zero. 

Therefore, no energy dissipation and zero resistance are observed at these 

temperatures. However, at some higher temperatures, the thermal energy, 

Tk
B

, becomes higher than the binding energy of the pairs leading to the 

unbinding of a vortex and an antivortex. At these temperatures, the external 

current can move the vortex in one direction, and the antivortex in an opposite 

direction, leading to energy dissipation detected as a resistance. According to 

this picture, the critical temperature, 
BKT

T , is the onset temperature of the 

resistance of the superconductor.  

The study of the BKT transition was the topic of a large number of works 

in thin superconducting films. However, controversial experimental data and 

its interpretation can be found in the literature, in particular in measurements 

of the layered cuprates, which may be considered as a system of quasi two-

dimensional layers [46-50]. 

The BKT mechanism is predicted for 2D systems. In this work, we study 

the relevance of the BKT model to nanowires forming networks in thin films of 

La1.84Sr0.16CuO4 high-temperature superconductors. We argue that in order to 

explain the field dependence of the magnetoresistance we have to account for 

both vortices and antivortices spontaneously created in the wires. The 

presence of the vortices and antivortices in the nanowires is consistent with 

the assumptions of the BKT transition. 
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2 EXPERIMENTAL 

We pattern networks of nanoloops in high quality La1.84Sr0.16CuO4 films 

grown by Molecular Beam Expitaxy. First, we create a mask of a network in 

the layer of an electron beam resist using a high resolution electron beam 

writer. We then etch the uncovered areas of the film with Ar-ion milling. The 

entire structure, including the network and the contacts, is made of a single 

piece of La1.84Sr0.16CuO4 to avoid high contact resistance. The network 

resistance is then measured using a four-contact method in the cryogenic 

system for transport measurement.  

In this work, we introduce two types of superconducting networks: a 

conventional square network (see Figure 6, left panel); and the newly 

designed double network made by placing small loops in every vertex of a 

square network (see Figure 6, right panel). Unlike the square network, the 

small loops in the double network do not share sides and are therefore 

decoupled. In a later chapter (Section 3.1), we confirm theoretically the 

decoupling nature of the network. This network combines the advantages of 

both a single loop and of a square network (high signal to noise ratio, higher 

critical current, and averaging over sample inhomogeneities). 

  

Figure 6. Left panel shows a typical scanning electron microscope (SEM) image of a 

simple square network with a unit cell size of 150 nm. Right panel shows a typical 

SEM image of a double network consisting of two interlacing networks of large loops 

of 500 nm, and small loops of 150 nm. 

150 nm 150 nm 
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2.1 FABRICATION OF LA2-XSRXCUO4 FILMS - MOLECULAR BEAM EPITAXY (MBE)

The high quality La1.84Sr0.16CuO4 films used in this study were grown at 

Brokhaven National Laboratory (BNL), in the group of Ivan Božović, using a 

Molecular Beam Epitaxy (MBE) machine. MBE film deposition is performed in 

ultra high vacuum (<10−8 Pa). The slow deposition rate allows the films to 

grow one atomic layer after another in a controllable way. Ultra-pure elements 

(La, Sr, Cu) are heated in separate cells until they begin to slowly evaporate 

(after melting or by sublimation). The gaseous elements then condense on the 

wafer, where they produce a layer of the desired compound.  

 

Figure 7. Molecular Beam Epitaxy chamber at BNL (Adapted from the Brookhaven 

Oxide MBE group website.). 

The main tool at BNL is a unique multi-chamber Molecular Beam Epitaxy 

(MBE) system (Figure 7) for the synthesis of complex oxides with atomic-layer 

precision. The MBE growth chamber consists of the following parts: (i) ultra-

high vacuum chamber with two 1,000 l/s turbo-molecular pumps and 24 

differential 70 l/s pumps; (ii) sample transfer mechanism to introduce samples 

from the air into the MBE chamber without venting the MBE; the main 

chamber includes an introduction chamber, a transfer chamber, and vacuum 

controls; (iii) a sample manipulator with 6 degrees of freedom, motorized and 

computer-controlled; the manipulator carries a sample heater with 4 

individually controlled quartz lamps capable of heating the substrate to 750°C; 
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(iv) pure ozone generation, collection, and a delivery system; (v) sixteen 

evaporation sources with individual pumping stations, gate valves, and fast-

acting shutters; (vi) a unique 16-channel atomic absorption spectroscopy 

(AAS) system for monitoring source rates in real time; (vii) a quartz-crystal 

oscillator monitor (QCM), mounted on a separate manipulator with 3 

translation degrees of freedom, motorized, and computer controlled; (viii) 

scanning reflection high-energy electron diffraction (RHEED); (ix) a time-of-

flight ion scattering and recoil spectroscopy (TOF-ISARS) system for real-time 

chemical analysis of the film surface; (x) an automatic operation control 

system that operates vacuum valves, roughening and turbo-molecular pumps, 

all motorized motions, the pneumatic shutters, and power supplies for thermal 

evaporation sources, substrate heater lamps, and the ozone source.  

The second major vacuum chamber is devoted to in-situ pre-lithographic 

processing, including ion-beam etching and electron-beam deposition of 

metallization and insulation layers. This chamber is equipped with an Ion Tech 

2-inch ion source, a 5-source Thermionics electron-beam evaporator, and an 

Oxford Applied Research atomic oxygen source. This chamber is installed in 

the clean room, so that substrates can be prepared in a class-100 clean 

environment, and loaded into the system without surface contamination. 

The growth and processing chambers are connected via a transfer 

chamber, which has load-locks on both ends, supplied with quartz lamps for 

fast outgassing of substrates when they are first introduced into the vacuum 

system. Loading can be accomplished within minutes. The transport chamber 

is also equipped with ion pumps and Ti-sublimation pumps, and has been 

tested to maintain vacuum down to 10-11 Torr. The transport chamber can be 

used for storage of 18 substrate holders, 3” each. 

For the determination of the crystallographic structure of films, the MBE 

group has a PANalytical Xpert Pro X-ray diffractometer (XRD). This 

instrument is a high-resolution (down to 5 arcsec) 4-circle goniometer which 

enables the study of in-plane and out-of-plane lattice constants, pole figures, 

rocking curves, and grazing-angle reflectance. We also used a Nanoscope-III 

Atomic Force Microscope (AFM) for surface characterization. 
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2.2 NANO-PATTERNING

A high resolution electron beam (e-beam) lithography system was 

exploited for nano-patterning the films. The e-beam system installed at the 

Bar-Ilan Institute of Nanotechnology and Advanced Materials is the 

CRESTEC-9500C (Figure 8). The electron beam lithography is based on 

'writing' with a focused electron beam in a thin layer of a material sensitive to 

the accelerated electrons (electron beam resist). The main advantage of 

electron beam lithography is that it is a very effective way to go beyond the 

diffraction limit of light and make features of few tens of nanometers or even 

less. In some cases, the exposed parts of the resist become highly soluble 

and can be removed by liquid developers (positive tone resists). In other 

cases, the exposed parts of the resist become unsolvable and the un-exposed 

parts can be removed by developers (negative tone resists).  

  

Figure 8. CRESTEC CABLE 9000 high resolution Electron Beam Lithography system at 

Bar-Ilan Institute of Nanotechnology and Advanced Materials (Adapted from 

CRESTEC website.). 

We used Poly(methyl methacrylate) (PMMA) as a negative tone resist. 

Although, in typical conditions PMMA functions as a positive resist, at 

increased exposure times PMMA may crosslink and become unsolvable in 

typical organic developers [51]. We observed that a cross-linked negative 

tone PMMA ensures a much higher contrast, resolution, and aspect ratio. In a 

layer of ~180 nm, we could reach an aspect ratio (width/height) of up to 1/10 

in features down to 16 nm. Generally in thinner layers of PMMA, one can 

reach a resolution below 10 nm. Cross-linked PMMA are also very stable 
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during ion milling, probably due to the enhanced stiffness of the crosslinked 

polymer. 

Nanopatterning steps are described schematically in Figure 9. A layer of 

poly(methyl methacrylate) (PMMA) resist was spun-off on top of a 

La1.84Sr0.16CuO4 film (step 1). We used PMMA with a molecular weight of 

495,000 (Microchem PMMA 495 A11) diluted further with anisole 

(approximately 50:50 volume ratio) to produce a film of ~180 nm after spin-

coating at the speed of 4,000 RPM. The sample with the resist layer was 

'baked' on a hot plate for 1.5 min at 100 - 180 Co. Then the desired patterns of 

the networks were exposed using a CRESTEC Cable-9000C high resolution 

e-beam lithography system with an acceleration voltage of 50 KeV and typical 

beam current of 1 nA (step 2). We used relatively high doses of electron beam 

exposure to produce a negative tone image of the network in the layer of 

PMMA. The exposure time was about one to two orders of magnitude higher 

than the time for the positive regime of the PMMA resist (step 3). The 

standard developer, based on MIBK (methyl isobutyl ketone), was then used 

to remove parts of the resist near the negative unsolvable (cross-linked) parts 

of the PMMA (step 4). This 'negative' PMMA pattern served as a mask for 

transferring the pattern to the superconducting film by Ar-ion milling, with 

energies of 1.5 – 3.5 KeV, and currents of 20 – 120 uA (steps 5 and 6). 
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ω

 
1. Spin-coating 

e-beam

 
2. E-beam writing 

 
3. Cross-linked PMMA pattern  

 
4. After development  

Ar+

1-3 keV

 
5. Ar-ion milling 

 

 

 

 
6. Final pattern  

 

Figure 9. Main nanopatterning steps: (1) spin-coating of the sample with a PMMA 

resist; (2) electron beam writing in the CRESTEC CABL 9000 system; (3) cross-linked 

pattern in the layer of PMMA; (4) PMMA mask on top of the superconducting film 

after development; (5) pattern transfer with Ar ion milling; (6) resulting pattern of 

the network in the superconducting film. 



 

17 

2.3 MAGNETO-TRANSPORT MEASUREMENTS 

The magnetoresistance of the superconducting networks was measured 

in a Quantum Design Physical Property Measurement System (PPMS®) 

(Figure 10). Sample environment controls include fields up to ± 9 Tesla and a 

temperature range of 1.9 - 400 K. 

 

Figure 10. Quantum Design Physical Property Measurement System (PPMS®) 

installed at the Bar-Ilan Institute of Nanotechnology and Advanced Materials 

(Adapted from the Quantum Design website.). 
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3 RESULTS

The details of this work are described in the following papers:  

I. I. Sochnikov, A. Shaulov, Y. Yeshurun, G. Logvenov and I. Bozovic, 

"Large oscillations of the magnetoresistance in nano-patterned high-

temperature superconducting films", Nature Nanotechnology 5, 516 - 

519 (2010). 

II. I. Sochnikov, A. Shaulov, Y. Yeshurun, G. Logvenov and I. Bozovic, 

"Oscillatory magnetoresistance in nano-patterned superconducting 

La1.84Sr0.16CuO4 films", Physical Review B 82, 094513 (2010). 

III. I. Sochnikov, Y. Shokef, A. Shaulov, and Y. Yeshurun, "Single-loop like 

energy oscillations and staircase vortex occupation in superconducting 

double networks", submitted to Physical Review B (2011). 

IV. I. Sochnikov, I. Božović, A. Shaulov and Y. Yeshurun, "Uncorrelated 

behavior of fluxoids in superconducting double networks", unpublished. 

 

As indicated in Section 2, our experiments focus on the specially 

designed double network (Figure 6, right panel) composed of two interlaced 

sub-networks of small and large loops. In Section 3.1 (paper  III) we provide a 

detailed theoretical analysis and computer simulations of the screening 

current distribution, energy 'waveform' (i.e., energy vs. field) and vortex 

occupation in the large and small loops of the double network. We show that 

these two sub-networks exhibit remarkably different behavior. While the sub-

network of large loops behaves similarly to a conventional square network, 

the behavior of the small loops resembles very closely the behavior of a single 

loop. Thus, for example, the vortex occupation of the large loops increases 

linearly with the field, whereas the small loops are occupied in steps. In 

addition, the form of the energy as a function of magnetic field in the double 

network is similar to the energy form of a single loop. These findings establish 

theoretically the sub-network of the small loops as an ensemble of decoupled 

loops. 

To confirm experimentally these results, in Section 3.2 (papers  IV) we 

compare magnetoresistnace oscillations measured in a conventional square 

network with loop size of 150 nm, and a double network of 150 nm small and 

500 nm large loops made of La1.84Sr0.16CuO4. In the square network, we 
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observe oscillations with features indicative of collective behavior of the loops, 

e.g. finite slope dHdR /  at 0=H , downward cusps and pronounced 

secondary dips at half integer values of 0/ΦΦ . In the double network, we 

observed dichotomic fluxoid quantization effects: The sub-network of the large 

loops behaves as regular periodic network, exhibiting correlated behavior of 

the fluxoids. In contrast, the sub-network of the small square loops exhibits a 

single-loop-like behavior. This experimental observation indicates 

uncorrelated arrangements of fluxoids in the sub-network of the small loops in 

the double network, confirming the theoretical predictions mentioned above. 

In Sections 3.3 (paper  I) we present magnetoresistance measurements in 

double networks of La1.84Sr0.16CuO4 with small loops as low as 75 nm. We 

observe magnetoresistance oscillations corresponding to the small loops with 

flux periodicity of ehc 2/ . It is tempting to interpret these oscillations as the 

Little-Parks effect, reflecting oscillations with the field in the transition 

temperature 
c

T . However, the amplitude of these oscillations is two orders of 

magnitude larger than the amplitude expected from the Little-Parks effect. We 

therefore proposed a new model for this large effect based on fluxoid 

dynamics. This model provides a good quantitative description of the 

oscillations amplitude and its temperature dependence. We also show that, 

due to the magnitude of the effect, the double network may serve as an 

effective tool in search of ehc /  and ehc 4/  fluxoid periodicities in 

superconducting nanoloops.  

In Section 3.4 (paper  II) we further extend the fluxoid dynamics model to 

include the interaction between the external field and the magnetic moment of 

the vortices and antivortices. The extended model accounts quantitatively for 

the measured monotonic background on which the magnetoresistance 

oscillations are superimposed. Moreover, an analysis of the background within 

this model indicates that in the patterned film both vortices and antivortices are 

present. This finding is consistent with the superconducting phase transition 

scenario proposed by Berezinskii, Kosterlitz and Thouless [41-45]. 
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3.1 SINGLE-LOOP LIKE ENERGY OSCILLATIONS AND STAIRCASE VORTEX OCCUPATION 

IN SUPERCONDUCTING DOUBLE NETWORKS 
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Single-loop like energy oscillations and staircase vortex occupation in 

superconducting double networks 

 I. Sochnikov1, Y. Shokef2, A. Shaulov1, and Y. Yeshurun1 

1 Department of Physics, Institute of Superconductivity and Institute of Nanotechnology and 

Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel 

2 Department of Materials and Interfaces, Weizmann Institute of Science,  

Rehovot 76100, Israel 

The magnetic-field dependence of the energy and vortex occupation is calculated for the 

recently realized superconducting double network consisting of two interlaced sub-

networks of small and large loops. Two different approaches are employed, both based 

on the 
2

J model: Mean-field analysis that minimizes the network energy assuming 

random vortex configurations, and numerical simulations in which energy is minimized 

avoiding this assumption. In the mean-field analysis the vortex population in both sub-

networks increases linearly with applied field. In contrast, the simulations show that while 

the population of the large loops increases linearly with field, the occupation of the small 

loops grows in steps, resembling the behavior of an ensemble of decoupled loops. This 

decoupling is also reflected in the waveform of the energy versus applied field. A modified 

mean-field analysis which introduces decoupling between the small loops yields results in 

excellent agreement with the simulations. These findings suggest that the behavior of a 

single loop is reflected in the double network, and thus constitute it as a favorable system 

for the experimental study of quantization effects in superconducting loops. 

 

PACS numbers: 74.81.Fa; 74.78.Na; 74.25.Uv; 75.75.-c 

 

Introduction 

In the early days of 

superconductivity London predicted that 

the fluxoid 1, defined as the sum of the 

magnetic flux and a term involving the 

persistent current, is quantized in a multiply 

connected superconductor in units of 

ehc 2/0 =φ . For a single superconducting 

loop, the fluxoid quantization, together with 

the requirement for energy minimization, 

dictates periodic changes in the screening 

current density J  and step-wise 

occupation of the loop with flux quanta. 

The energy, being proportional to 2J , is 

also periodic with the magnetic field, giving 

rise to periodic changes in the critical 

temperature, 
c

T , as demonstrated by Little 

and Parks 2.   

Similar to a single superconducting 

loop, two-dimensional periodic networks of 

superconducting loops also exhibit 

magnetoresistance oscillations with field 

periodicity 0 / Aφ , where A  corresponds to 

the area of each loop in the network 3-11. 

Analyses of the current distribution and the 

energy vs. magnetic field in such networks 

are usually based on the 2J -model 12-14 

assuming current conservation in each 

node and that the average field for the 

entire network is equal to the externally 

applied field 15-17.  
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Recently, we fabricated a novel type 

of superconducting network 18, 19 made by 

connecting the vertexes of small square 

loops with relatively long wires, forming two 

interlaced sub-networks of small and large 

loops, see Figure 1a. The motivation for 

designing such a network was to create an 

array of decoupled small loops that behave 

like isolated loops. Here we analyze this 

unique network employing two theoretical 

approaches both based on the 2J -model , 

one is the mean-field approach that 

minimizes the network energy assuming 

random vortex configurations, and the 

second is based on numerical simulations 

in which energy is minimized avoiding this 

assumption. We first demonstrate these 

two approaches in the analysis of a simple 

square lattice (Figure 1b). Although in this 

case both methods yield similar results for 

the periodicity and the occupation rate, the 

numerical simulations show additional local 

minima at normalized fields m+5.0 , with 

integer m, corresponding to the 

checkerboard configuration studied 

previously 3, 12, 14, 20. More dramatic 

differences between the two approaches 

are manifested in the analysis of the double 

network (Figure 1a). While in the naïve 

mean-field analysis the vortex population in 

both sub-lattices of small and large loops 

increases linearly with the applied field, the 

numerical simulations show that the 

occupation of the small loops grows in 

steps, resembling the behavior of an 

ensemble of nearly decoupled loops. 

However, we show that a modified mean-

field analysis which includes decoupling 

between the small loops reproduces the 

staircase vortex occupation and the energy 

waveform obtained in the simulations. 

Finally, we point to the advantage of the 

numerical simulations in providing the 

actual spatial distribution of the vortices in 

the double network, demonstrating visually 

the different occupation of the large and 

small loops at various magnetic fields. 

These results will guide future experimental 

efforts to measure vortex occupations in 

such complex networks. 
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Figure 1. Schematic diagram of (a) the double 

network, and (b) the simple square network. 

Square network 

We consider a network of 

M M× square loops, each of side L , in an 

external magnetic field H , see Figure 1b. 

The fluxoid quantization 1, 21 requires that 

the integral over the currents around each 

loop is balanced by the flux quanta in the 

loop and the external magnetic flux. Thus,  
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 2

0 HLNLJ −=∑ φα
δ

δα , (5) 

where 3,2,1,0=δ  indexes the edges of the 

square loop 1...1,0
2 −= Mα , carrying a 

screening current δαJ , and αN  is the 

number of vortices in the loop α . 

The energy is given by the sum of 
2J  over all the network wires:  
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where two sides in each loop are 

considered and the summation over all 

loops ensures that each wire in the 

network is accounted for. Eqs. (5) and (6) 

are the basis for both the mean field and 

the numerical simulation approaches. In 

writing these equations we adopted the 

assumptions of the 2J  model 12-14, namely  

that the magnetic penetration length is 

much larger than the wires width and the 

screening currents are therefore very 

small. These currents produce magnetic 

fields which are perturbations on the 

applied field and are therefore neglected. 

This model also neglects the geometric 

inductance 22, 23 and the additional energy 

from the induced currents interacting with 

the applied field as compared to the kinetic 

energy.  Notably, the model assumption on 

the screening length is well satisfied in our 

experiments 18, 19. 

Mean field solution 

We assume that a fraction F  of the 

square loops have 1+N  vortices and the 

remaining F−1  have N . Therefore, the 

total magnetic flux through the system is 

 2

0])1()1([ LHNNFNFN
TT

=−++ φ , (7) 

where 2

T
N M=  is the number of loops in 

the lattice. Thus 
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Since F  is a fraction and N  is an 

integer, we may write 
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where { }•  denotes the fractional part and 

•  the integer part. 

We refer to a loop carrying )1( +N  

flux quanta as occupied and to one 

carrying only N  quanta as vacant. Each 

edge in the network has two neighboring 

loops, and in the mean-field approximation 

the probability that both loops are occupied 

is 2
F , that one is occupied and one is 

vacant )1(2 FF − , and that both are vacant 

is 2)1( F− . Moreover, we will assume that 

these three types of edges carry currents 

++J , −+J , and −−J , respectively. Hence, the 

average current in the system is 

−−−+++ −+−+= JFJFFJFJ 22 )1()1(2 . (10) 

Eq. (5) for the occupied and vacant 

loops takes the form,  

0
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(11) 

In writing Eq. (11), we assumed that for 

each one of the four loops surrounding a 

given loop, there is a probability F  to be 

occupied and probability F−1  to be 

vacant. It is straightforward to verify from 

Eqs. (10) and (11) that the requirement 
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that the average current in the network 

0=J  is automatically satisfied.  

Eq. (6), for the energy, takes the 

form 
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(12) 

We are interested in the minimal energy for 

a given external field; therefore we seek 

the current distribution in the system that 

minimizes the energy given in Eq. (12). We 

use the constraints of Eq. (11) to express 

++J  and −−J  in terms of −+J , then 

substitute these in Eq. (12) and minimize 

with respect to −+J  by requiring 

0/ =∂∂ −+JE . After some algebra this yields 
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(13) 

The solid line in Figure 2 shows the 

normalized energy per loop as a function of 

the normalized external field. Note that the 

energy waveform for the network is 

inverted and shifted by a quarter of a 

period relative to that of a single loop (see, 

e.g., Figure 4.5 in Ref. 21). In addition, in 

contrast to an isolated loop in which the 

occupation grows in steps 21, in the square 

network the occupation grows linearly with 

the field, see Eq. (8). 

This solution is valid as long as the 

vortex distribution in the network is 

disordered, namely that there are no 

correlations between the occupations of 

neighboring loops. It is instructive to see 

how this breaks down for 2/1=F , where 

the minimum energy configuration is 

known to be that of a checkerboard 

arrangement of the vortices on the lattice. 

For such a configuration, all edges have an 

occupied loop on one side and a vacant 

loop on the other 24, 25. Eq. (11) should be 

modified to have only contributions from 

−+J  for both types of loops, which leads to 

)8/(0 LJ φ=−+ . Similarly, Eq. (12) for the 

energy should be modified to include only 

a contribution from 2

−+J , eventually leading 

to )32/(2

0 LNE Tφ= , denoted by the bold 

circles in Figure 2, which is half of the 

mean-field value of )16/(2

0 LNTφ  obtained 

by substituting 2/1=F  in Eq. (13). Also, 

note that for the checkerboard 

arrangement of vortices, Eq. (10) may no 

longer be used, yet the total current still 

vanishes. Here, the magnitude of the 

current on all edges is equal, but their 

directions alternate in space to achieve a 

net current in one direction around the 

occupied loops and in the opposite 

direction around the vacant loops. 
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Figure 2. (Color online) Normalized energy per 

loop obtained from the mean-field analysis, 

Eq. (13), and from the simulations (solid line 

and open circles respectively) plotted versus 

the normalized field. The bold circles indicate 

the theoretical value of the energy 

corresponding to the checkerboard 

configuration of vortices in the square 

network, )32/(2

0 LNE Tφ= . 

The numerical simulation, discussed 

in the next section, offers a more accurate 
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solution, not limited to disordered 

distributions of vortices in the network. 

Numerical simulation  

For a given external field H  we 

calculate the total number of vortices in the 

system as  

 2

0/
V T

N N L H φ= . (14) 

We initially distribute these vortices 

randomly throughout the network. Then, 

we employ the following procedure to find 

the currents δαJ  through all edges such 

that the total energy of the network is 

minimized: We assign a circular current βJ
~

 

to each loop β  and express δαJ  in terms of 

βJ
~

: 

 ∑=
β

β
δ
αβδα JKJ

~
, (15) 

where the four TT NN ×  matrices 

210 ,, KKKKKKKKKKKK and 3KKKK  are evaluated in 

Appendix A, assuming current 

conservation at every node of the network 
26 and periodic boundary conditions. Eq. 

(15) provides four sets of 2
M  linear 

equations. By substituting Eq. (15) into Eq. 

(5) one gets NT linear equations with 2
M  

variables βJ
~
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where ∑=Υ
δ

δ
αβαβ LK  is an 22

MM ×  matrix. 

Having the population vector NNNN  we 

evaluate the vector of the circular currents JJJJ~  by inversion 

 )(
~ 2

0 HL−= φNNNNΥΥΥΥJJJJ -1 . (17) 

Knowledge of JJJJ~  for a given spatial 

distribution of the vortices on the lattice 

allows calculation of the current matrix δαJ  

using Eq. (15) and thus the total energy E  

using Eq. (6).  

The minimum energy and the vortex 

configuration corresponding to it are found 

as follows: One cell is randomly chosen 

and the number of vortices in this cell is 

reduced by one and subsequently the 

number of vortices in one of the 

neighboring cells is incremented by one. 

We calculate the currents δαJ  and the 

energy for the new configuration. If the 

energy of this new configuration is lower 

than the energy of the previous state, then 

we accept the new one. Otherwise, the old 

state is preserved. This process is 

repeated for every cell in the network, 

completing one sweep of energy 

minimization. Such sweeps are repeated 

(typically 500-1000 times) until we reach a 

steady state. Results of the calculated 

energy for a 1010×  network are shown in 

Figure 2 (open circles). Convergence of 

the calculations presented in Figure 2 was 

confirmed for several fields in a 

2020× network.  

Notably, although the periodicity of 

the energy versus field and the occupation 

rate are as in the mean field case, the 

simulation shows local minima at 

normalized fields m+2/1 , with integer m, 

corresponding to the checkerboard 

configuration 3, 12, 14, 24, 25. Hints for 

additional minima at normalized magnetic 

fields of 3/1 and 3/2 may be observed in 

Figure 2 in agreement with e.g. reference 

9. Additional possible minima are in the 

noise level. More dramatic differences 

between the two approaches of the mean-
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field solution and numerical simulations are 

found in the case of the double network, as 

described below. 

Double network 

We refer to the double network of 

Figure 1a, made up of a square lattice of 

side L and square loops of side L<l  

oriented at o45  with respect to this lattice 

and placed at every vertex of the large 

lattice. Each large loop has four short 

edges of length l  and four long edges of 

length l2−= Lx . (We refer to these 

edges as long even though for l<x , 

ll )21(2 +<< L ). The area of each 

small loop is 2
l  and the area of each large 

loop is 22
l−L .  

Mean-field solution 

When this system is placed in an 

external magnetic field H , a fraction f  of 

the small loops have 1+n  flux quanta 

through them, and a fraction f−1  have n , 

and similarly, a fraction F  of the large 

loops have 1+N  and a fraction F−1  have 

N . These quantities are related to the 

external field since the total magnetic flux 

satisfies 
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The left-hand side is the result of 

counting the number of flux quanta 

according to the above definitions ( TN  is 

the number of loops of each size), and the 

right-hand side is the external field 

multiplied by the total area of the system. 

This leads to 
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In deriving the mean-field solution 

for the double grid, we note that as for the 

simple square lattice, there are three types 

of long edges: those separating two 

occupied loops ( ++ ), those separating an 

occupied loop and a vacant loop ( −+ ), and 

those separating two vacant loops ( −− ). 

We assume that the probabilities of finding 

each of these types are given 

by 2
F , )1(2 FF − , and 2)1( F− , respectively. 

We assume these types of edges carry 

currents ++J , −+J , and −−J , respectively. 

Therefore, the requirement that the 

average current vanishes 26 reads 
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(20) 

Each short edge separates a small 

loop and a large loop, therefore the types 

)(+−  and )(−+  are not symmetric as for the 

long edges, and we need to deal with four 

types of edges: separating two occupied 

loops )(++ , separating an occupied small 

loop and a vacant large loop )(+− , 

separating a vacant small loop and an 

occupied large loop )(−+ , and separating 

two vacant loops )(−− . We assume 

currents ++j , −+j , +−j , and −−j  on them, 

and within the mean-field approximation, 

the probabilities of finding each of them are 

given by fF , )1( Ff − , Ff )1( − , and 

)1)(1( Ff −− , respectively. The 

requirement that the average current on 

the short edges vanishes is 

0)1)(1(

)1()1(

=−−+

+−+−+=

−−

+−−+++

jFf

FjfjFfFjfj
. 

(21) 
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An occupied small loop has the 

following relation between the integral of 

the currents around it and the magnetic 

flux through it, 

 2

0)1(])1([4 HlnjFFj −+=−+ −+++ φl , (22) 

For a vacant small loop we similarly 

have 

 2

0])1([4 HlnjFFj −=−+ −−+− φl . (23) 

The currents on each of the edges 

are determined by the flux in the large loop 

on the other side of that edge, and we 

have used the mean-field assumption that 

the flux in adjacent loops is uncorrelated, 

thus the probabilities for having each of the 

neighboring large loops occupied or vacant 

are F and F−1 , respectively. 

Similarly, an occupied large loop 

has  

 

)()1(

])1([4

])1([4

22

0 l

l

−−+=

=−++

+−+

−+++

+−++

LHN

JFFJx

jfjf

φ

, 

(24) 

and a vacant large loop has 
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(25) 

Multiplying Eq. (22) by F and Eq. 

(23) by F−1 , and adding, leads by the use 

of Eq. (21) to  
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It is easy to see that now Eq. (20) is 

satisfied as well. Together with Eq. (19), 

we obtain 0

22 /)( φl−=+ LHFN  and 

0

2 /φlHfn =+ . Since N  and n  should be 

integer and f  and F  fractional, we obtain 
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(27) 

where { }•  denotes the fractional part and 

•  the integer part. 

We are now left with four equations 

(22)-(25) connecting the seven unknown 

currents ( ++J , −+J , −−J , ++j , −+j , +−j , −−j ). 

We use these four equations to express 

++J , −−J , ++j , −−j  in terms of −+J , −+j , +−j . 

The energy, given by the sum of 2xJ  over 

TN2  long edges and the sum of 2jl  over 

TN4  short edges,  
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(28) 

may now be expressed in terms of the 

parameters −+J , −+j , +−j . We minimize E  

with respect to these parameters by 

demanding that 0/// =∂∂=∂∂=∂∂ +−−+−+ jEjEJE . 

After some algebra, this yields 
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(29) 

Figure 3a and 3b show the mean-

field calculations (Eq. (29)) of the 

normalized energy per unit cell of the 

double network and the 

occupation, FNN
v

+=  and fnn
v

+= , of 

the large and the small loops, respectively,  

for 5/ =lL . The short period oscillations 

shown in Figure 3a are associated with the 
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large loops. These oscillations are 

superimposed on oscillations of longer 

period associated with the small loops. 

Figure 3b shows that the mean field 

solution predicts that the occupation of 

both the large and small loops increases 

linearly with the field, behaving as in two 

separate square networks consisting of 

large and small loops. As described in the 

next section, the numerical simulations 

show that while the occupation of the large 

loops increases linearly with the applied 

field, the occupation of the small loops 

grows in steps, resembling the behavior of 

an ensemble of nearly decoupled loops.  
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Figure 3. (Color online) (a) Mean-field 

calculations (Eq. (29)) of the normalized energy 

per unit cell of the double network and (b) the 

occupation, FNN
v

+= , of the large and the 

small loops, fnn
v

+= , for 5/ =lL . Note that 

the ratio of the slopes of the two lines is 24, 

corresponding to the ratio between the areas 

of the large and small loops. 

Numerical simulations 

For the double network (Figure 1a) the 

fluxoid quantization takes a form of two 

systems of discrete sums  
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where δαJ  is the current through the side 

71,0 K=δ of the loop α  in the sub-network 

of the large loops and γαj  is the current 

through the side 31,0 K=γ  of the small 

loop α ′  adjacent to the large loop α (see 

Figure 1a). xL =δ  for 7,5,3,1=δ and l=δL  

for 6,4,2,0=δ . Thus, we have TN  linear 

equations for the population of vortices in 

the large loops and TN  equations for the 

vortices in the small loops. As for the 

simple network, we rather use the notation 

of circular currents: J
~

 for large loops and 

j
~

for small loops. The total current in a 

specific wire is then expressed using these 

circular currents: 
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(31) 

where the TT NN ×   matrices γδδ CCCCBBBBAAAA ,, and 

γDDDD  are evaluated in Appendix B, assuming 

current conservation at every node of the 

network 26 and periodic boundary 

conditions. Substitution of the total currents 

from Eq. (31) to Eq. (30) leads to the 

quantization rule expressed in terms of the 

circular currents 



 

31 

 

2

0

)3()2(

22

0

)1()0(

~~

~~
)(

~~

~~

l

ll

l

HnjYJY

jDJC

LHN

jYJY

jBLJAL

−=+

=+

−−=

=+=

=+

′
′

′′′′

′
′′′′

′
′′

′
′′

∑∑

∑∑

∑∑

∑∑

φ

φ

α
β

ββα
β

ββα

βγ
β

γ
βα

γβ
β

γ
βα

α

β
ββα

β
βαβ

βδ
β

δ
βα

δ

δβ
β

δ
αβ

δ

. 

(32) 

 

Using vector form we can invert Eq. 

(32) and derive the vectors of circular 

currents JJJJ~  and jjjj~   
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(33) 

where )0(YYYY , )1(YYYY , )2(YYYY  and )3(YYYY  are TT NN ×  

sub-matrices, NNNN  and nnnn  is the number of 

vortices in the large and the small loops 

respectively written in vector form. 

The energy of the network is 

expressed in terms of the currents in each 

wire:  

 ∑
=

=

6,4,3,2,1,0

2

δ
α

δαδ JLE , 
(34) 

by summing over α  we ensure that each 

of the sides, including 7,5=δ , are 

accounted for. 

As described in the previous section 

the algorithm is based on minimizing the 

energy associated with the kinetic energy 

of the screening currents induced in the 

superconducting network. For the double 

network the occupation is described by a 

vector of length TN2 , corresponding to TN  

small and TN  large loops. For a given 

external field H , at the initial step the loops 

are randomly filled with 0

2 /φHLN
T

vortices. 

Using Eq. (31) and Eq. (33) we calculate 

the currents induced in the sides of the 

small and large loops. Knowledge of these 

currents allows the calculation of the 

energy of the network using Eq. (34).  

The minimum energy of the double 

network and the vortex configuration 

corresponding to it are found following a 

similar procedure as described above. 

Namely, one cell, small or large, is 

randomly chosen and one vortex is moved 

from this cell to one of its nearest 

neighbors and the currents δαJ  and γαj   

the energy for the new configuration are 

calculated. If the energy of this new 

configuration is lower than the energy of 

the previous state, then we accept the new 

one. Otherwise, the old state is preserved. 

We repeat this procedure for every cell in 

the network (i.e. 
T

N2  times), completing 

one sweep of the energy minimization. 

Such sweeps are repeated (typically 500-

1000  times). The symbols in Figure 4 

present the results of these calculations for 

a network consisting of 1010×  large and 

1010×  small loops for different values of 

the ratio l/L . Numerical convergence of 

the calculations were confirmed for several 

fields in a 2020× network of 5/ =lL .  

The squares in Figure 4a show the 

normalized energy of the double network 

for 10/ =lL , 5  and 3 . As in the mean-field 

solution, oscillations of short periods, 

corresponding to the large loops, are 

superimposed on the oscillations of large 

periods corresponding to the small loops. 

However, we note that the waveform of the 

large period oscillations resemble that of a 

single loop (i.e. minima at integer multiples 

of flux quanta and cusps at integer 

multiples of half flux quanta) in contrast 

with the results of the mean-field solution 
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(Figure 3a), which exhibits a waveform 

similar to the simple square network shown 

in Figure 2. 
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Figure 4. (Color online) (a) Normalized energy per unit cell obtained theoretically after minimizing 

Eq. (37) (bold solid lines) and from simulations (squares connected by thin lines as guide for the 

eye). (b) Average number of vortices per large loop, ><
v

N , and per small loop , ><
v

n  , obtained 

theoretically (Eq. (37)), (dashed and solid lines, respectively)  and from simulations (diamonds and 

circles, respectively). The different panels relate to double networks with size ratios 10/ =lL , 5  

and 3  (from top to bottom). Both numerical and analytical solutions show breaks around the 

middle of the steps resulting from competition in occupation of large and small loops. This 

competition occurs in the field range where the energy cost to insert a vortex into a small loop or a 

large loop is similar. The field increment (in units of 0

2 /φlH ) in the simulations is 02.0 for 3/ =lL , 

and 01.0  for 5/ =lL and 10 . The step in the ><
v

n  plot for 10/ =lL  is relatively sharp ( 01.0< ) 

and hence points on this step are absent. 
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The diamonds and circles in Figure 

4b show the average number of vortices 

per loop calculated for the large and small 

loops respectively, as a function of the 

magnetic flux normalized to the area of the 

small loops. Results are shown for three 

ratios 10,5,3/ =lL . The large loops are 

filled with vortices approximately linearly as 

the magnetic field increases. In contrast, 

the small loops are filled in a step-wise 

manner that becomes sharper as the ratio 

l/L  increases. This indicates that the 

system prefers to distribute vortices 

between the large loops and to expel 

vortices from the small loops. Only when 

the normalized magnetic field is close to 

m+5.0 , the system may accept vortices 

into the small loops. This behavior is not 

predicted in the framework of the mean-

field solution as described in the previous 

section. The step-wise occupation and the 

energy waveform both imply that the sub-

lattice of the small loops behaves as an 

ensemble of decoupled single loops 27. In 

the next section we show how these 

results may be obtained theoretically from 

a modified mean-field model, assuming 

decoupling of the small loops.  

Modified mean-field model 

As mentioned above, the mean-field 

analysis of the double network described in 

the beginning of this section shows that the 

two sub-lattices of the double network are 

populated as two separate square lattices. 

This is in contrast with the results of the 

simulations presented in this section that 

show stepwise occupation of the small 

loops. We will now show how an 

assumption on the decoupling between the 

small loops may be introduced into the 

mean-field description, and that this hybrid 

framework explains the numerical findings. 

We incorporate the decoupling of the small 

loops by ignoring the requirement that the 

currents around them should match with 

the currents on their neighboring large 

loops. Namely, for the large loops we 

assume the square-lattice mean-field 

description with Eq. (11) replaced by: 
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 Here, the total area 2LN
T

 is covered by a 

square lattice of 
T

N  large loops, each with 

area 22
l−= L

L
α  and perimeter 

))21((4)(4 ll −+=+= Lx
L

β , and with 
T

N  

disconnected small loops, each with area 
2
l=

S
α  and perimeter l4=

S
β . We use the 

convention N , F , n  and f , from the 

beginning of this section to describe the 

population of these loops, and as in the 

mean-field solution, compliance of the total 

magnetic flux with the external field leads 

to Eq. (19).  

For each small loop, we assume 

that the current is distributed uniformly 

around its perimeter; for a small loop 

carrying k  vortices, this current is thus 

ss
Hkj βαφ /)( 0 −= , resulting in an energy 

ssS
HkjE βαφβ /)( 2

0

2 −== . From (35), we 

express ++J  and −−J  in terms of −+J , and 

substitute the result in the expression for 

the energy: 
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(36) 

where the first term is the mean-field 

expression for the contribution to the 

energy from the large loops (see Eq. (12)), 
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and the last two terms average the 

contributions from populated and vacant 

small loops according to their abundance. 

By minimizing E  with respect to −+J  we 

eventually obtain: 
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(37) 

Note that we are still free to choose the 

ratio )/()( fnFN ++  such that Eq. (37) is 

minimized. 

The bold solid lines in Figure 4a show 

the normalized energy per unit cell 

obtained after minimizing Eq. (37) for 

10/ =lL , 5  and 3  (from top to bottom). 

Impressive agreement with the results of 

the simulations (circles in Figure 4a ) is 

evident. The dashed and solid lines in 

Figure 4b show the average number of 

vortices per large loop, 
v

N , and per small 

loop, 
v

n , respectively, as calculated from 

Eq. (37). These results are in perfect 

agreement with the results of the 

simulations described by diamonds and 

circles in Figure 4b. Note that our hybrid 

model treats the large loops by mean-field 

interactions and the small loops as 

disconnected. Yet, the behavior of the 

small loops is not identical to that of loops 

without network, since the presence of the 

large loops affect the distribution of 

vortices in the small ones. For example, as 

shown in Figure 4b, for small l/L  the 

steps in 
v

n  are not sharp as expected for 

loops without network. These steps 

become sharper as the ratio l/L  

increases.  

Spatial configuration of vortices 

Our numerical simulation allows 

mapping the occupation of the small and 

large loops in the double network in the 

state of minimum energy, for different 

external fields. Figure 5 shows the 

distribution of vortices in a double network 

with 5/ =lL  at low normalized fields. In 

this field range the large loops are 

occupied in the same way as a simple 

square network: For 2

0/ 0.01H φ =l  vortices 

are located far away from each other; at 

02.0/ 0

2 =φlH  corresponding to half filling 

of the large loops, 5.0/)( 0

22 ≈− φlLH , a 

checkerboard distribution 3, 12, 14 is 

observed in the large loops, while all small 

loops are empty; at 2

0/ 0.03H φ =l  most of 

the large loops are occupied with one 

vortex. The small loops, however, are 

empty at all these fields and, therefore, a 

plateau in )(Hn
v

 is observed in Figure 4b.  

Figure 6 shows the vortex distribution 

in a double network with 5/ =lL  at 

relatively high fields of 2

0/H φ =l 50.0,48.0  

and 52.0 . In this narrow field range the 

number vortices in the small loops 

increases sharply from zero at 48.0  to one 

at 52.0 . The )(Hn
v

 curve at these fields 

(Figure 4b) corresponds to the transition 

from one plateau to another. As the field is 

further increased, the number of vortices in 

the large loops increases linearly, while the 

number of vortices in the small remains 

constant. 

Summary 

We have theoretically studied the 

recently realized superconducting double 

network consisting of two interlaced sub-

networks of small and large loops. Our 
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numerical simulations show that the vortex 

occupation of the large and small loops is 

completely different. Vortices prefer to 

occupy the large loops, even in large 

numbers, before the occupation of the 

small loops begins. The population of the 

sub-network of the large loops increases 

linearly with the field, while the occupation 

of the sub-network of the small loops 

grows in steps. The energies of both sub-

networks oscillate with the field with 

different periodicities determined by the 

areas of the large and small loops. The 

energy oscillations of the sub-network of 

the large loops are of low amplitude and 

short period and resemble that of a simple 

square network, exhibiting cusps at the 

beginning and at the end of each period. 

These oscillations are superimposed on 

the high amplitude and long period energy 

oscillations of the sub-network of the small 

loops, which resemble the energy 

oscillations of isolated loops exhibiting 

cusps at the middle of each period. The 

low amplitude of the energy oscillations of 

the large loops is a result of the relatively 

small screening current induced in the 

large loops. At the end of the first short 

period each of the large loops is occupied 

with one vortex, in the next period with two 

vortices, etc. In contrast, the sub-network 

of the small loops remains empty up to 

fields of approximately half of the long 

period, i.e. 2

0 2/ lφ . Up to this field the 

screening current in the small loops 

increases linearly and consequently the 

contribution to the energy increases 

quadratically with the field. Around 2

0 2/ lφ , 

in a relatively narrow field range defined by 

the ratio l/L , all the small loops are filled 

with one vortex. In the next long period, at 

)2/(3 2

0 lφ , each of the small loops is 

occupied with two vortices, etc. Thus the 

behavior of the small loops resembles that 

of a single loop.  

The above physical picture is 

explained by a modified mean-field 

analysis in which we treat the large loops 

by mean-field interactions and the small 

loops as disconnected. This hybrid 

framework yields the stepwise population 

and energy oscillations in excellent 

agreement with the numerical simulations. 

We therefore conclude that the sub-

network of the small loops behaves as a 

large ensemble of decoupled loops. As 

demonstrated in Figure 4b, the degree of 

decoupling improves as the size ratio /L l  

between the two networks increases. 

The numerical simulations have the 

advantage in providing the actual vortex 

distribution in the network as a function of 

the external field as demonstrated in Figs. 

5 and 6. Experimental imaging of vortex 

distribution in simple networks of micron 

size squares has been previously 

performed using Hall probe technique 28, 29, 

scanning SQUID microscopy 30 and Bitter 

decoration 31-33. Extension of these works 

to imaging of vortex distribution in nano-

loops of the double network may be 

realized by exploiting Magnetic Force and 

SQUID microscopy. This study may lead to 

novel designs of network and methods of 

controlling the position of a single vortex, 

with implications to future nano-scale 

superconducting devices. Our work may 

also be applicable to the recent activity on 

arrays of single-domain ferromagnetic 

islands 34-36. 
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Normalized field=0.01

0.02

0.03

Number of vortices per cell

10

Figure 5. (Color online) Vortex configuration in 

the double network at low normalized fields, 

02.0,01.0/ 0

2 =φlH  and 03.0 , for 5/ =lL . 

The large loops are continuously occupied in 

the same way as in a simple square network 

while the small loops remain empty. Note the 

checkerboard distribution at 02.0/ 0

2 =φlH  

corresponding to half filling of the large loops, 

5.0/)( 0

22 ≈− φlLH .  

Normalized field=0.48

0.5

0.52

Number of vortices per cell

10 12

 

Figure 6. (Color online) Vortex configuration in 

the double network at relatively high fields 

5.0,48.0/ 0

2 =φlH  and 52.0  for 5/ =lL . 

Note that in this narrow field range the 

number of vortices in the small loops increases 

sharply from zero to one. 
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Appendix A – Kirchoff-

law's matrices for the simple 

square network 

The four 22
MM × matrices 

210 ,, KKKKKKKKKKKK and 3KKKK  with periodic boundary 

conditions have the form  
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MandMif

if

K
αβα

αβα
βα

αβ  

;

0

112,111

112,111

1

2

2

2













−−−≠−+=−

−−−≠−=−

=

=

otherwise

MMMandMif

MMMandif

if

K
K

K

αβα

αβα

βα

αβ  













−≥−+=−

−<−=−

=

=

otherwise

MMandMMif

MMandMif

if

K

0

1

1

1

22

2

3

αβα

αβα

βα

αβ .

This matrix uses Kirchoff’s law to 

express the total current in a specific wire 

in a square network using the circular 

currents in two adjacent loops sharing the 

same wire. Using Eq. (15) one can get for 

example MMM JJJ
~~

11,0 −= ++ , 111,1

~~
JJJ MM −= ++ , 

211,1

~~
+++ −= MMM JJJ  and 1211,1

~~
+++ −= MMM JJJ . 

Appendix B - Kirchoff-

law's matrices for the double 

network 

The matrices δAAAA  γδ CCCCBBBB , and γDDDD  

with periodic boundary condition are 

evaluated as 
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;
0

1

;;;;

6420

37251301



 =

====

====

otherwise

if
AAAA

KAKAKAKA

βα
αβαβαβαβ

αβαβαβαβαβαβαβαβ

;

0

112,1111

112,111

112,111

010

;

0

112,111

112,111

;
0

1

;

0

1

1

;0

222

2

22

2

6

2

2

4

2

22

2

0

7531















−−−−≠−≠−−+=−

−−−−=−=−

−−−−≠−<−−=−

=−=

=









−−−=−+=−

−−−≠−=−

=



 =−

=









−≥−+=−

−<−=−

=

====

otherwise

MMMMandMandMMif

MMMMandif

MMMMandMMandMif

andMif

B

otherwise

MMMandMif

MMMandif

B

otherwise

if
B

otherwise

MMandMMif

MMandMif

B

BBBB

K

K

K

K

K

ααβα

αβα

ααβα

βα

αβα

αβα

βα

αβα

αβα

αβ

αβ

αβ

αβ

αβαβαβαβ

 

;

0

,011

,011

;
0

1

;

0

1

1

;

0

2,111

02,11

011

100

2

2

3

2

2

1

2

2

2

2

0









−=≠+=−

−=+−=−

=



 =−

=









≥+=−

<+−=−

=















−≠−>++=−

≠−=+=−

<<++−=−

−==

=

otherwise

MMMandif

MMMandMif

C

otherwise

if
C

otherwise

MandMif

MandMMif

C

otherwise

MMMMandMandMif

andMMMMandif

MandMMif

Mandif

C

K

K

K

K

ααβα

αβα

βα

αβα
αβα

ααβα

ααβα

αβα

βα

αβ

αβ

αβ

αβ

 



 =

====
otherwise

if
DDDD

0

1
3210

βα
αβαβαβαβ .
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These matrices use Kirchoff’s law to 

express the total current in a specific wire 

in the double network using the circular 

currents in two adjacent loops sharing the 

same wire. Using Eq. (31) one can get, for 

example, MMM JJJ
~~

11,1 −= ++  and 

111,2

~~
+++ −= MMM Jjj . 
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3.2 UNCORRELATED BEHAVIOR OF FLUXOIDS IN SUPERCONDUCTING DOUBLE 

NETWORKS 
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Uncorrelated behavior of fluxoids in superconducting double networks  

I. Sochnikov1, I. Božović2, A. Shaulov1 and Y. Yeshurun1 

1Department of Physics, Institute of Superconductivity and Institute of Nanotechnology and 

Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel 

2Brookhaven National Laboratory, Upton, New York 11973-5000, USA 

We study the effect of magnetic fields on the resistance, R , of a superconducting 

La1.84Sr0.16CuO4 film patterned into a 'double' network comprising nano-size square 

loops having their vertexes linked by relatively long wires. The results are compared 

with those obtained in a regular network of square loops of the same size. Both 

networks exhibit periodic dependence of R  on the ratio 0/Φ Φ  between the flux 

penetrating a loop and the superconducting flux quantum. However, while the regular 

network exhibit features characteristic of collective behavior of the loops, the double 

network exhibits a single loop behavior. This observation indicates uncorrelated 

arrangements of fluxoids in the double network, in agreement with a recent theoretical 

prediction. 

A variety of superconducting 

networks have been studied, both 

theoretically and experimentally, aiming at 

revealing correlated behavior of fluxoids in 

such networks 1-14. The foundation of these 

studies traces back to the fluxoid 

quantization work of Little and Parks 15-17 

who demonstrated in magnetoresistance 

measurements the theoretical prediction of 

F. London 18 showing that the deviation of 

the magnetic flux through a 

superconducting loop from an integral 

number of flux quanta must be 

compensated by a circulating current, 

satisfying the equation 

00

2
2

Φ
Φ

−=⋅
Φ ∫ ndj

c
l

λ
, 

where the line integral is taken around the 

loop, λ  is the penetration depth,Φ  is the 

magnetic flux penetrating the loop, and 0Φ  

is the superconducting flux quantum. In a 

network, the above equation must be 

satisfied for any and every loop. In 

addition, the arrangements of fluxoids on 

the underlying network must fulfill the 

requirement of minimum energy. These 

two requirements give rise to correlated 

arrangements of fluxoids in periodic 

networks, the most famous one being the 

checkerboard arrangement of fluxoids in a 

regular square network 8, 11, 14, 19, 

manifested by secondary dips of the 

magneto-resistance at half integer values 

of 0/Φ Φ .  

Recently, we fabricated a novel type 

of superconducting network 20, 21 made by 

connecting the vertexes of small square 

loops with relatively long wires, forming 

two interlaced sub-networks of small and 

large loops. The motivation for designing 

such a network was to create an array of 

decoupled small loops that behave like 

isolated loops. In a previous manuscript 22 

we theoretically simulated the behavior of 

this unique network in a perpendicular 

magnetic field. The simulations showed 

that as the field increases, the vortex 

population in the small loops grows in 

steps, resembling the behavior of an 

ensemble of nearly decoupled loops. In 
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addition, the loop energy E  was found to 

be a periodic function of the ratio 0/Φ Φ , 

with a waveform similar to that of a single 

isolated loop. Features indicative of 

collective behavior of the loops, e.g. finite 

slope /dE dH  at 0H = , downward cusps 

in )(HE  and pronounced secondary dips 

at half integer values of 0/Φ Φ , which are 

found in a regular square network, are all 

absent in the case of a double network. 

The purpose of the present work was to 

confirm experimentally the predictions of 

these simulations. For this purpose we 

fabricated a regular square network and a 

double network having square loops of the 

same size, and compared their 

magnetoresistance behavior. 

Molecular Beam Epitaxailly grown 

La1.84Sr0.16CuO4 high-Tc superconducting 

films (nominally 26 nm thick) were 

patterned into a regular square network of 

150x150 nm2 loops, and a double network 

consisting of square loops of the same 

size having their vertexes connected by 

~300 nm long wires, as shown in Figure 1. 

The wire width in both networks was ~45 

nm. Resistance measurements were 

performed using a Quantum Design 

PPMS with bias current of 100 nA. 

Magnetic fields were applied normal to the 

film surface (a-b crystallographic plane), 

keeping a constant temperature in the 

range 20–40 K with stability of few mK.  

Figure 2 shows the magneto-

resistance per unit cell, ( )R H , for the 

square network (left panel) and for the 

double network (right panel) as a function 

the applied magnetic field H , measured at 

the indicated temperatures. Both networks 

exhibit periodic oscillations of R  vs. H  

with the same period of Oe900~ , 

corresponding approximately to 0 / AΦ  

where 150150×=A nm2 is the area of a 

single square loop. However, the 

oscillations waveform, ( )R H , for the two 

networks is evidently different. While the 

regular network exhibits features 

characteristic of collective behavior of the 

loops, e.g. finite slope /dR dH  at 0H =  and 

downward cusps, the double network 

behavior resembles that of a single loop, 

exhibiting zero slope /dR dH  at 0H =  and 

upward cusps. 

 

 

Figure 1. Scanning electron microscopy image 

of the square (a) and the double (b) networks 

patterned in La1.84Sr0.16CuO4 high temperature 

film. The brighter elements are the 

superconducting wires composing the 

networks.  
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Figure 2. (Color on line) Resistance per 

network unit cell as a function of magnetic 

field measured at different temperatures in 

the square (a) and the double (b) networks. 

A closer look at the 

magnetoresistance oscillations reveals fine 

structures in the magnetoresistance of the 

both networks. In Figure 3 we zoom on the 

magnetoresistance data of each network 

at a temperature 85.0~/
c

TT .The square 

network (Figure 3a) exhibits pronounced 

secondary dips at half integer values 

of 0/Φ Φ  (see inset), corresponding to the 

checkerboard arrangement of vortices in 

this network 8, 11, 14, 19. In the double 

network these secondary dips are absent; 

however, as shown in the inset to Figure 

3b, oscillations of a period Oe80~ , 

corresponding to the sub-network of the 

large loops, are superimposed on the 

longer period oscillations, shown as a 

parabolic-like 'envelope' in the inset to 

Figure 3b, originating from the sub-network 

of the small square loops. These small 

oscillations, which are more pronounced at 

the minima of ( )R H , exhibit downwards 

cusps characteristics of the square 

network behavior originating from the large 

loops. 

Figure 2 shows that in both 

networks the oscillatory behavior of R  is 

limited to a temperature range roughly 

between ~22 and ~31 K, resulting in non-

monotonic variation of the oscillations 

amplitude R∆  with the temperature, as 

summarized by the squares in Figure 4. 

This figure also shows the temperature 

dependence of the network resistance per 

unit cell )(TR  (circles), as well as /dR dT  

(diamonds), for the regular and the double 

networks. Evidently, )(TR  of the double 

network is significantly larger as it includes 

the resistance of the long wires composing 

the large loops. Nevertheless, the unit cell 

amplitude of the oscillations, R∆ , for both 

networks are similar, indicating that it 

cannot distinguish between correlated and 

uncorrelated behavior of fluxoids in 

networks of loops of the same size.  
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Figure 3. (Color on line) Resistance per 

network unit cell as a function of magnetic 

field measured in the square (a) and the 

double (b) networks at 26.5 and 25.5 K 

respectively. The insets zoom on the regions 

marked by dashed lines. Inset (a) shows a 

secondary dip at half period corresponding to 

checkerboard arrangement of vortices in the 

square network. Inset (b) shows the 

magnetoresistance oscillations corresponding 

to the large loops of the double network. The 

solid line in inset (b) is a guide for the eye 

showing parabolic-like 'envelope' 

corresponding to the small loops.  

By passing we note that no 

correspondence is found between R∆  and 

/dR dT , see Figure 4. Such a 

correspondence should follow if we 

assume that R∆ results from periodic 

changes in the critical temperature 
c

T , as 

in the analysis of the Little-Parks 

experiment 15-17. More remarkable 

deviation from this analysis is found in the 

magnitude of R∆ . Contrary to classical 

superconductors, the predicted changes in 

the critical temperature, ( )20 / rTT
cc
ξ∝∆ , in 

high-
c

T  materials are extremely small 

because of the short coherence length 0ξ , 

failing to explain the large amplitude of the 

oscillations 23, 24. In previous papers 20, 21 

we developed a model for a single, 

isolated loop which explains the details of 

the double network magnetoresistance, 

including the large oscillations amplitude 

and its temperature dependence. This 

model ascribes the magnetoresistance 

oscillations in high-
c

T  superconductors to 

the periodic changes in the interaction 

between thermally-excited moving vortices 

and the oscillating persistent current 

induced in the loops. The model explains 

well the magnitude of R∆  as well as its 

temperature dependence 20, 21.  
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Figure 4. (Color on line) Resistance, R , 

measured at zero magnetic field (circles), 

amplitude of the magnetoresistance 

oscillations (squares), and the derivative 

/dR dT  (diamonds) as a function of 

temperature in the square (a) and the double 

networks (b). Solid lines are guide to the eye. 

In summary, we observed different 

fluxoid quantization effects in a 

superconducting double network as 

compared to a regular, square network. 

The regular network exhibit correlated 

behavior of the fluxoids, which is 

manifested by e.g. finite slope /dR dH  

at 0H = , downward cusps and secondary 

dips at half integer values of 0/Φ Φ . In 

contrast, the sub-network of the small 

square loops in the double network 

exhibits a single loop behavior lacking all 

these features. This observation indicates 

uncorrelated arrangements of fluxoids in 

the sub-network of the small loops, in 

agreement with our recent theoretical 

prediction. Experimentally, the double 

network has an advantage over a single 

loop as it allows application of larger 

currents, thus improving the signal to noise 

ratio. In addition, measurements on large 

number of loops in the network average 

effects of inhomogeneity and size 

distribution, allowing more precise studies 

of e.g. recent theoretical predictions of 

'exotic' flux periodicity in unconventional 

superconductors 25-32. 
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Large oscillations of the magnetoresistance

in nanopatterned high-temperature

superconducting films
Ilya Sochnikov1*, Avner Shaulov1, Yosef Yeshurun1, Gennady Logvenov2 and Ivan Božović2

Measurements on nanoscale structures constructed from high-
temperature superconductors are expected to shed light on the
origin of superconductivity in these materials1–7. To date, loops
made from these compounds have had sizes of the order of hun-
dreds of nanometres8–11. Here, we report the results of
measurements on loops of La1.84Sr0.16CuO4 , a high-tempera-
ture superconductor that loses its resistance to electric cur-
rents when cooled below ∼38 K, with dimensions down to
tens of nanometres. We observe oscillations in the resistance
of the loops as a function of the magnetic flux through the
loops. The oscillations have a period of h/2e, and their ampli-
tude is much larger than the amplitude of the resistance oscil-
lations expected from the Little–Parks effect12,13. Moreover,
unlike Little–Parks oscillations, which are caused by periodic
changes in the superconducting transition temperature, the
oscillations we observe are caused by periodic changes in the
interaction between thermally excited moving vortices and
the oscillating persistent current induced in the loops.
However, despite the enhanced amplitude of these oscillations,
we have not detected oscillations with a period of h/e, as
recently predicted for nanoscale loops of superconductors
with d-wave symmetry1–6, or with a period of h/4e, as predicted
for superconductors that exhibit stripes7.

Molecular beam epitaxy (MBE) was used to synthesize 26-nm-
thick films of optimally doped La1.84Sr0.16CuO4 on single-crystal
LaSrAlO4 substrates polished perpendicular to the (001) direc-
tion10,11. The films were characterized in situ by reflection
high-energy electron diffraction (RHEED), and ex situ by X-ray
diffraction, atomic force microscopy and mutual inductance
measurements. Subsequently, as detailed in the Methods, the films
were patterned into a network of ‘small’ square loops, the sides of
which were between 75 and 150 nm long, separated by ‘large’
square loops with sides of length 500 nm; the width of all features
was �25 nm. A typical network of small and large loops is shown
in Fig. 1. The length and width of the small squares were almost
an order of magnitude smaller than those in previously studied
high-Tc networks and rings8–11.

Figure 2 shows the magnetoresistance of the 150/500-nm network
measured at T¼ 28.4 K in a magnetic field applied normal to the film
surface (and to the a–b crystallographic plane). Themeasuredmagneto-
resistance exhibits large oscillations superimposed on a parabolic-
like background. The period of these oscillations, H0≈ 950 Oe,
corresponds to the magnetic flux quantum, F0¼ h/2e¼AH0 ,
where h is Planck’s constant, e the electron charge and A the area
of the small loop. Oscillations with a period of �80 Oe, which
correspond to the large loops, are also observed, but their amplitude
is too small to be noticed on the scale of Fig. 2.

The measured magnetoresistance, normalized to the normal-
state resistance at T¼ 30.2 K, Rn¼ 36 V, is presented in Fig. 3a as
a function of the temperature T and the applied magnetic field H.
Periodic oscillations of R are observed for temperatures between
26 and 30.2 K. The temperature dependence of the amplitude of
these oscillations is described by the diamonds in the inset to
Fig. 2. Note that the field range in Fig. 3 is limited to low fields
where the parabolic-like background is insignificant.

It is tempting to interpret these data as Little–Parks oscil-
lations8,12–17 originating from the periodic dependence of the
critical temperature Tc on the magnetic field. However, the ampli-
tude of the oscillations seen in Fig. 2 is much too large. Taking
a typical value18 for the coherence length in La1.84Sr0.16CuO4

150 nm

Tc

T (K)
26 30

0

40

R
 (

Ω
)

20

28

Figure 1 | Patterned superconducting film. Main panel: scanning electron

microscope (SEM) image of a La1.84Sr0.16CuO4 superconducting film covered

with a patterned layer of poly(methyl methacrylate) (PMMA) resist (thin

lines with bright edges). The left inset shows an SEM image of a part of the

resulting superconducting network (150× 150-nm2 loops separated by

500× 500-nm2 loops) after the uncovered parts of the film were removed

by ion milling. The right inset shows the measured (white circles)

temperature dependence of the network (30× 30mm2) resistance in zero

magnetic field near the superconducting transition; the current is 1mA. In

the patterned film the onset temperature for superconductivity is 30.2 K

and the transition width is �2 K (compared with 38 K and �0.5 K for the

as-grown film).
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of j0¼ 2 nm, the measured critical temperature at zero field
T c
onset

¼ 30.2 K, and the loop effective radius r¼ a/
p

p¼ 83.5 nm
(a¼ 150 nm is the loop side length), one would expect to find
oscillations in Tc with an amplitude DTc¼ 0.14Tc(j0/r)

2
≈ 2.4 mK

(refs 8,12,13,15,16) . This value of DTc yields an upper limit to
the resistance amplitude, DR¼ DTc(dR/dT), depicted by the
dashed line in the inset to Fig. 2, the maximum value of which is
a factor of�50 smaller than the measurement from our experiment.

Given that the Little–Parks effect cannot explain the observed
large magnetoresistance oscillations, we suggest that the origin of
this phenomenon is the drastically modified vortex dynamics in
the patterned film. Although in continuous films the activation
energy for vortex creep usually decreases monotonically with the
applied magnetic field19–21, in nanopatterned films this activation
energy becomes oscillatory, as moving vortices interact with the
current induced in the nanoloops, which is a periodic function of
the field strength. Periodicity of the induced current results directly
from the fluxoid quantization12,13,15,22, which is also the source of the
Little–Parks effect. The fluxoid, consisting of the flux induced by the
supercurrent in the loop and by the external magnetic field, is
characterized by the quantum vorticity number N, which defines
the energy state of the superconducting loop. In the lowest energy
state, N is equal to H/H0 rounded to the nearest integer15,16.

Thermal excitation of vortices causes fluxoid transitions from the
equilibrium quantum state N to a higher energy state. Other
groups23,24, in their analysis of magnetic scanning microscope
measurements of a mesoscopic superconducting ring, have
calculated the energies DE +

in and DE +

out required to create a
vortex (þ) or an antivortex (2) and carry it into or outside of the
superconducting loop, respectively:

DEin
+

= DEout
+

= Ev + E0[+(N − H/H0) + 1/4] (1)

The first term in equation (1), Ev = (F2
0/(8p

2L(T))) ln 2w/(pj(T))
( )

,

is field-independent and represents the energy needed for the cre-
ation of the vortex/antivortex in the superconducting wire. Here,
w is the wire width, j(T)¼ 0.74j0(1–T/Tc)

21/2 is the Ginzburg–
Landau coherence length16, and L(T)¼ 2l(T)2/d is the Pearl

penetration depth16,25 in a film of thickness d and with a London
penetration depth l(T)¼ l0(1–(T/Tc)

2)21/2. The second term in
equation (1) is periodic with the field, expressing the interaction
of a vortex or an antivortex with the current associated with the
fluxoid in terms of the energy, E0 = (F2

0/(8p
2L(T)))(w/a). Note

that equation (1) is valid in the limit of large penetration depth,
L≫ w, and for narrow rings with widths much smaller than the
radius of the loops, r. Nevertheless, the width has to be sufficiently
large to accommodate a vortex26. The quantized values of N lead to
periodically oscillating values of (N2H/H0).

In the following we consider fluxoid transitions accomplished by
only one vortex or antivortex entry and exit. Thermodynamic aver-
aging of these four types of excitation energies, DEi , yields an effec-
tive potential barrier DEeff:

DEeff =
∑

DEie
−DEi/kBT/

∑

e−DEi/kBT (2)

By inserting equation (1) for DEi , one obtains

DEeff ≈ (Ev + E0/4) − E0
2
(N–H/H0)

2
/kBT (3)

which includes a field-independent term and a term periodic with
the field.

We derive the magnetoresistance by applying Tinkham’s
approach in analysing the broadening of the resistive transition in
high-Tc superconductors

20. Replacing the activation energy in his
equations with DEeff given in equation (3), yields

R

Rn

= I0
DEeff
2kBT

( )[ ]−2

(4)

where I0 is the zero-order modified Bessel function of the first kind.
Equation (4) describes a periodic function with period H0¼F0/A
and temperature-dependent amplitude

DR ≈ Rn

E0

2kBT

( )2
I1(a)

I0(a)
( )3 (5)

where a¼ (Evþ E0/4)/(2kBT), and I1 is the first-order modified
Bessel function of the first kind. Note that Ev and E0 are a function
of the two length scales, l0 and j0 , which can be used as fitting par-
ameters for the measured temperature dependence of the amplitude
of the oscillations. The fit shown by the solid line in the inset to
Fig. 2 yields l0¼ 750 nm and j0¼ 2.4 nm. Note that these values
of l0 and j0 may be influenced by the lithographic process, which
may cause damage in regions near the surfaces, thus making the
effective thickness and width significantly smaller than the
nominal values.

Figure 3b presents calculation of R(H,T)/Rn based on equation
(4) and using the above values for l0 and j0. The calculated
R(H,T) is similar to the experimental results (Fig. 3a) in low mag-
netic fields where the parabolic-like background on which the oscil-
lations are superimposed is negligible (see Fig. 2). Extension of this
analysis to also describe the background arising at higher fields
requires modification of equation (1) to include field-dependent
terms of higher order24. Comparing the details of the experimental
and calculated waveforms shown in Fig. 3a and b, one notices that
the experimental resistance oscillations look rather sinusoidal,
whereas the calculated results exhibit a ‘scallop’ shape with
sharper curvature at the top than at the bottom. This difference is
most likely related to the distribution of the size of the
fabricated loops.

We note that equation (4) can also explain the broadening of
R(H¼ 0,T) in the patterned film as shown in the inset to Fig. 1.
In zero field, R depends only on the non-periodic part, Ev , in
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Figure 2 | Magnetoresistance oscillations. Resistance of the

La1.84Sr0.16CuO4 network shown in Fig. 1 as a function of applied magnetic

field, measured at 28.4 K. The oscillations are superimposed on a parabolic-

like background. The amplitude of the oscillations, DR, is well defined at low

fields. Inset: DR as a function of temperature; the solid line is a theoretical fit

based on equation (5). The dashed line is an upper limit for the amplitude of

resistance oscillations calculated for the Little–Parks effect (right axis; note

that the scale on this axis is expanded tenfold).
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equation (3), which decreases as the wire width w is reduced. This
allows for easier excitations of vortices and antivortices at lower
temperatures, giving rise to non-zero resistance.

In general, magnetoresistance oscillations originate from both
the Little–Parks effect and the modified vortex dynamics reported
here. However, in high-Tc superconductors, the contribution of
the Little–Parks effect is relatively small because of the short coher-
ence length21, and the contribution of the vortex dynamics is large
because of strong thermal fluctuations27. It should be mentioned
that large-amplitude magnetoresistance oscillations have previously
been observed in a different nanostructure made of two low-Tc
superconducting nanowires. These oscillations were attributed to
the field-driven modulation of barrier heights for phase slips28,29.

As that interpretation relates to the one-dimensional superconduct-
ing wires (w, j), it may not be directly applicable to our high-Tc
loops in which the wire width is an order of magnitude larger
than the coherence length.

Recent theoretical studies1–6 predicted that the magnetoresis-
tance in high-Tc superconducting nanorings with a d-wave
order-parameter should show an additional component with flux
periodicity h/e. This component is expected even for loops of
length scales larger than the coherence length. Figure 4 shows the
Fourier transform analysis of magnetoresistance oscillations for both
the 75- and 150-nm loops. Evidently, despite the enhanced magneto-
resistance oscillations observed in our experiment, a periodicity of
h/e is not observed, even in the 75-nm loops (which are the smallest
prepared so far with high-Tc superconductors).

More recently, a periodicity of h/4e (corresponding to half a
quantum of flux) was predicted for striped high-Tc superconduc-
tors, replacing the usual periodicity of h/2e (which corresponds to
a quantum of flux7). As is evident from Fig. 4, in our optimally
doped La1.84Sr0.16CuO4 films, the h/4e flux periodicity does not
replace the h/2e periodicity, but only appears as its
second harmonic.

In summary, the resistance of a network of nanoscale loops of
La1.84Sr0.16CuO4 oscillates as a function of the magnetic flux
through the loops in a way that cannot be explained by the classic
Little–Parks effect. These oscillations are rather attributed to the
field-driven modulation of the height of the energy barrier to
vortex motion. The absence of h/e and h/4e periodicities in these
oscillations is at variance with some recent theoretical predic-
tions1–7 for this type of system. However, efforts to discover such
periodicities should continue by extending this work to higher
and lower doping across the entire phase diagram.

Methods
The La1.84Sr0.16CuO4 films were synthesized by MBE and spin-coated with
poly(methyl methacrylate) (PMMA) electron-beam resist with a molecular weight of
495,000, diluted with anisole, providing a thickness of 180 nm after 1 min of
spinning at 4,000 rpm. The samples coated with PMMA were subsequently baked
for 90 s on a hotplate at 100 8C. The desired network pattern was exposed in the
PMMA layer using a CRESTEC CABLE-9000C high-resolution electron-beam
lithography system. The PMMA was used as a negative electron-beam resist; note
that when PMMA is exposed to a sufficiently high electron dose it crosslinks30 and
becomes insoluble in most organic solvents. After removing the unexposed PMMA
using methyl isobutyl ketone (MIBK), a mask was formed that defined the desired
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Figure 3 | Comparison of measured and calculated magnetoresitance oscillations. a, Measured normalized resistance of the network shown in Fig. 1 as

a function of the applied magnetic field and temperature. b, Normalized resistance calculated using equation (4) for wire width w¼ 25 nm, film thickness

d¼ 26 nm, zero-temperature penetration depth l0¼ 750 nm and coherence length j0¼ 2.4 nm. The calculation was made for circular loops of the same

area as the square loops: that is, with an effective radius r¼ a/
p

p¼ 83.5 nm (a¼ 150 nm is the actual loop side length). The values for l0 and j0 are

obtained from the fit of equation (5) to the temperature dependence of the amplitude shown in the inset to Fig. 2. The colour changes from blue to green

to orange to white as the resistance increases from zero to the normal-state value.
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network pattern (Fig. 1, main panel). This pattern was then transferred to the
superconducting film by removing the uncovered parts of film using a standard
argon ion milling process. The result of this last step is shown in the left
inset to Fig. 1.

The network resistance was measured using a Quantum Design Physical
Properties System over temperatures from 2 to 300 K with a stability of about
+0.001 K, and in magnetic fields of up to 9 T. A four-point contact resistance
configuration was used, in which a d.c. current of 1 mA was fed through two
relatively large current leads placed on opposite sides of the network and the d.c.
voltage was measured across an additional two leads. All four leads were made from
the same La1.84Sr0.16CuO4 superconducting film as a continuous part of the network
to avoid undesirable metal/superconductor contact effects.

Received 1 March 2010; accepted 10 May 2010;

published online 13 June 2010
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Oscillatory magnetoresistance in nanopatterned superconducting La1.84Sr0.16CuO4 films
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A superconducting La1.84Sr0.16CuO4 film patterned into a network of 100�100 nm2 noninteracting square
loops exhibits large magnetoresistance oscillations superimposed on a background which increases monotoni-
cally with the applied magnetic field. Neither the oscillations amplitude nor its temperature dependence can be
explained by the Little-Parks effect. Conversely, a good quantitative agreement is obtained with a recently
proposed model ascribing the oscillations to the interaction between thermally excited moving vortices and the
oscillating persistent currents induced in the loops. Extension of this model, allowing for direct interaction of
the vortices and antivortices magnetic moment with the applied field, accounts quantitatively for the monotonic
background as well. Analysis of the background indicates that in the patterned film both vortices and antivor-
tices are present at comparable densities. This finding is consistent with the occurrence of Berezinskii-
Kosterlitz-Thouless transition in La1.84Sr0.16CuO4 films.

DOI: 10.1103/PhysRevB.82.094513 PACS number�s�: 74.78.Na, 74.25.Uv, 74.25.Wx

I. INTRODUCTION

Quantization of the fluxoid in multiply connected super-
conductors was first predicted by Fritz London in the early
days of superconductivity.1 This prediction was later con-
firmed experimentally by Little and Parks2–4 who demon-
strated that a thin-walled superconducting cylinder pierced
by a magnetic flux shows magnetoresistance oscillations
with the period equal to the superconducting flux quantum
�0=h /2e. The explanation provided by Little and Parks was
that the resistance oscillations �R�H� reflect periodic
changes in the superconducting transition temperature Tc
given by �Tc=�R�H��dT /dR�. Subsequent studies have
demonstrated periodic changes in the magnetoresistance also
in two-dimensional �2D� networks of superconducting wires
�see Refs. 5 and 6, and references therein�. These studies
were focused on determining the arrangements of vortices in
the network and the effects of size and symmetry of the
network on the periodic oscillations.

Magnetoresistance oscillations in a high-Tc superconduct-
ing network were first reported by Gammel et al.,7 who as-
cribed them to the Little-Parks effect. However, the ampli-
tude of the oscillations and its temperature dependence could
not be accounted for while no attempt was made to analyze
the monotonic background on which the magnetoresistance
oscillations were superimposed.

We have recently demonstrated8 large magnetoresistance
oscillations in a network of decoupled 150�150 nm2

La1.84Sr0.16CuO4 loops and showed that the oscillations am-
plitude is much larger than what one would expect from the
periodic changes in the critical temperature associated with
the Little-Parks effect. We ascribed these oscillations to a
dynamic effect: thermally excited vortices move and interact
with the persistent current induced in the loops by the mag-
netic field. As the induced current oscillates periodically with
the magnetic flux piercing the loops, due to fluxoid quanti-
zation, this interaction is periodic with the applied magnetic
field; this gives rise to the magnetoresistance oscillations.

This effect is especially important in high-Tc superconduct-
ors, where the Little-Parks effect is suppressed because of
the relatively small coherence length, while the vortex dy-
namics is enhanced due to relatively large thermal fluctua-
tions. As the size of the loops decreases down to the nano-
scale, the dynamic effect becomes even more significant,
because of an increase in the persistent current induced in the
loops. We have also outlined a theoretical analysis8 based on
the fluxoid dynamics model,9,10 that successfully accounts
for the amplitude of the observed magnetoresistance oscilla-
tions and its temperature dependence.

In this paper we present data on smaller La1.84Sr0.16CuO4
loops of size 100�100 nm2, almost an order of magnitude
smaller than what has been reported previously for other
high-Tc materials. In addition, we extend our theoretical
analysis to include description of the monotonic background
on which the magnetoresistance oscillations are superim-
posed. The analysis of the magnetoresistance background
provides evidence for the presence of both vortices and an-
tivortices in La1.84Sr0.16CuO4 films at elevated temperatures.
This is consistent with thermal generation of vortex-
antivortex pairs that dissociate above a certain temperature,
the so-called Berezinskii-Kosterlitz-Thouless �BKT� transi-
tion point.11 The occurrence of a BKT transition has been
predicted in thin high-Tc superconducting films with the lat-
eral dimensions smaller than the perpendicular penetration
depth.12 However, the experimental efforts to observe such a
phase transition in superconductors have so far yielded in-
conclusive results.

II. EXPERIMENTAL

An advanced molecular-beam epitaxy system was em-
ployed to synthesize optimally doped La1.84Sr0.16CuO4 films,
26 nm thick, epitaxially on LaSrAlO4 substrates polished
perpendicular to the �001� direction.13,14 The films were char-
acterized in situ by reflection high-energy electron diffrac-
tion, and ex situ by x-ray diffraction, atomic force micros-

PHYSICAL REVIEW B 82, 094513 �2010�

1098-0121/2010/82�9�/094513�7� ©2010 The American Physical Society094513-1

Administrator
Typewritten Text
57



copy and mutual inductance measurements. Subsequently,
the films were patterned into a 30�30 �m2 network con-
sisting of 100�100 nm2 square loops with �25 nm wire
width, separated by 500�500 nm2 loops, as shown sche-
matically in Fig. 1. We note that the size of the loops and the
wire width in the present experiment are nearly an order of
magnitude smaller than previously studied in high-Tc net-
works and rings.7,15–19 In this specially designed network the
small loops do not share sides, thus eliminating complica-
tions that may arise in simple networks �e.g., a square net-
work�, such as vortex interaction and frustration or intersti-
tial vortices trapped in the wires.5–7,15–18 Simulations20 show
that the decoupling of the small loops improves as the ratio
between the sides of the large and the small loops increases.
In the present network we achieved a ratio of 5:1 as com-
pared to about 3:1 in our previous published work.8 In such a
network, the behavior of the small loops approximates that
of an ensemble of isolated loops, thus reflecting the behavior
of a single loop. Nevertheless, this decoupled network has an
advantage over a single loop as it allows application of larger
currents, thus improving the signal-to-noise ratio. In addi-
tion, measurements on large number of loops in the network
average effects of inhomogeneities and size distribution.

The network pattern of Fig. 1 was created using a
CRESTEC Cable-9000C high resolution e-beam lithography
system in a layer of poly�methyl methacrylate� �PMMA� re-
sist spun-off on top of a superconducting La1.84Sr0.16CuO4
film. This PMMA pattern served as a mask for transferring
the pattern to the superconducting film by Ar-ion milling.
The scanning electron microscope �SEM� image in the inset
shows a detail �a single loop� of the resulting superconduct-
ing network. The network magnetoresistance was measured
using a Quantum Design physical properties measurement
system. The magnetic field was applied normal to the film
surface �the a-b crystallographic plane� and the bias current
was 1 �A.

Figure 2 shows measurements of the network resistance
R�T� at zero field as a function of temperature before �closed
circles� and after �open circles� patterning. Evidently, pat-

terning of the film into narrow wires causes broadening of
the resistive transition. In the following we show that this
broadening can be interpreted as the result of a decrease in
energy required to create a vortex/antivortex pair as the wire
width decreases. Figure 2 also shows an anomalous peak in
R�T� of the patterned film near Tc. A similar peak was ob-
served previously in superconducting nanostructures and its
origin is still debated.22–24

Figure 3 shows the network magnetoresistance measured
at different temperatures between 27 and 32 K. The mea-
sured magnetoresistance exhibits large oscillations superim-
posed on a monotonic background. The temperature up to
which the oscillations persist, which in what follows we de-
fine as the transition temperature, Tc, is �32 K. The oscil-
lation amplitude decreases as the field increases. At tempera-
tures above �32 K, R�H� exhibits an anomalous shape, the
magnetoresistance is decreasing with the field �negative
magnetoresistance�.25 The period of the oscillations, H0
�2300 Oe, corresponds to the magnetic flux quantum, H0
=�0 /�r2, where r�52.8 nm is the effective radius of the

FIG. 1. �Color online� Main panel: schematic description of a
sample consisting of 100�100 nm2 loops �orange color� intercon-
nected by 500 nm long wires �bright bars�. Inset: SEM image of a
single loop patterned by electron-beam lithography in a
La1.84Sr0.16CuO4 film. The whole sample contains 60�60 small
loops.
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FIG. 2. �Color online� Measured temperature dependence of the
resistance in a continuous film �solid circles, the dotted line is a
guide to the eyes� and the patterned film �open circles� at zero
applied field. The solid blue line is calculated using Eq. �5� with
Tc=32 K and Rn=76 � yielding fit values �0=750 nm, �0

=2.5 nm, d=23.4 nm, and w=21 nm. The red dashed line is based
on the Halperin-Nelson formula for a 2D superconductor �Ref. 21�
using the Berezinski-Kosterlitz-Thouless transition temperature,
TBKT=27.6 K, the fluctuation-corrected BCS critical temperature,
TBCS=32 K, and Rn=76 �.
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FIG. 3. Resistance of the patterned film as a function of mag-
netic field perpendicular to the sample plane �i.e., parallel to the
c-crystallographic axis� at different temperatures. The lowest and
the uppermost curves correspond to 27 K and 32 K, respectively.
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small loop. Oscillations of the period �80 Oe corresponding
to the large loops are also observed but on the scale of Fig. 3
their amplitude is too small to be noticed. In Fig. 4, the
circles show the measured temperature dependence of the
oscillations amplitude. Evidently, the magnetoresistance os-
cillations are observed only within a limited temperature
range around the transition, exhibiting the maximum ampli-
tude around 29.5 K.

III. THEORETICAL MODEL AND DISCUSSION

The magnetoresistance oscillations shown in Fig. 3 at the
first sight resemble the Little-Parks effect2,3 originating from
the periodic dependence of the critical temperature, Tc, on
the applied magnetic field. However, this resemblance is de-
ceptive. For an estimate, let us take as the typical26 value of
the coherence length, �0=2 nm, the critical temperature in
zero field at the onset of the resistance drop, Tc=32 K, and
the loop effective radius r= ��0 / ��H0��1/2=52.8 nm; using
these parameter values for the amplitude of oscillations in Tc
one obtains11,27 �Tc

LP=0.14Tc��0 /r�2�6.4 mK. From this
�Tc

LP we can calculate an upper limit to the resistance oscil-
lations amplitude, �R=�Tc

LP�dR /dT�, shown by the triangles
in Fig. 4. Evidently, �R expected from the Little-Parks effect
exhibits the maximum value which is a factor of �50
smaller than the maximum value measured in our experi-
ment. Moreover, attributing the data shown in Fig. 3 to the
Little-Parks effect leads to the illogical conclusion that �Tc

LP

would be temperature dependent. This is shown in Fig. 5,
where the solid points were calculated from the experimen-
tally measured oscillation amplitude, �R, and the tempera-
ture derivative dR /dT, using �Tc=�R / �dR /dT�. Note that
the extracted �Tc exhibits unexpected temperature depen-
dence with values that are two orders of magnitude larger
than the constant value of about 6.4 mK �the solid line in
Fig. 5�.28

Given that the Little-Parks effect cannot explain the ob-
served giant magnetoresistance oscillations, one needs to
look for alternative explanations. We conjecture that the ori-
gin of this phenomenon may be in drastically modified vor-
tex dynamics in nanopatterned films. While in continuous

films the activation energy for vortex creep usually decreases
monotonically with the applied magnetic field,29–31 in nano-
patterned films this activation energy becomes oscillatory,
since moving vortices interact with the current induced in
nanoloops, and this current is a periodic function of the field
strength. Periodicity of the induced current results directly
from the fluxoid quantization1–3,27 which is also the cause of
the Little-Parks effect. The fluxoid, consisting of the flux
induced by the supercurrent in the loop and by the external
magnetic field, is characterized by the quantum vorticity
number, N, which defines the energy state of the supercon-
ducting loop. In the lowest energy state, N is equal11,27 to
H /H0 rounded to the nearest integer. Thermally induced vor-
tices or antivortices cause fluxoid transitions from the equi-
librium quantum state, N, to a higher energy state. Kirtley et
al.9 and Kogan et al.,10 in their analysis of magnetic scanning
microscope measurements of mesoscopic superconducting
rings, calculated the energies �Ein

	 and �Eout
	 that are re-

quired to create a vortex �+� or an antivortex �−� in a super-
conducting wire forming a loop and to carry it into or outside
of the loop hole, respectively,

�Ein
	 = Ev�T� + E0�T��N − H/H0 + 1/2� 
 �H ,

�Eout
	 = Ev�T� + E0�T��N − H/H0 − 1/2� 
 �H . �1�

The first term in Eq. �1�, Ev, is field independent and
represents the energy needed for creation of the vortex/
antivortex in a ring with annulus width w. For our rings with
r /w�1 /2 we can use Ev=�0

2 ln�2w /���T�� /8�2��T�. Here,
��T�=0.74�0�1−T /Tc�−1/2 is the Ginzburg-Landau coherence
length11 and ��T�=2��T�2 /d the Pearl penetration depth11,32

in a film of thickness d and with the London penetration
depth11 ��T�=�0�1− �T /Tc�2�−1/2.

The second term in Eq. �1� is periodic with the field,
expressing the interaction of a vortex or an antivortex with
the current associated with the fluxoid in terms of the energy
E0. For our rings we use E0=�0

2 ln��r+w /2� / �r
−w /2�� /8�2��T�. The quantized values of N lead to periodi-
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FIG. 4. Temperature dependence of the measured oscillation
amplitude �circles�. The solid line is calculated using Eq. �7� with
the parameters extracted from Fig. 2. The triangles show an upper
limit for the resistance oscillations amplitude calculated for the
Little-Parks effect; note that this scale is expanded tenfold.

27 28 29 30 31 32
10-3

10-2

10-1

100

T
c
(K
)

T (K)

measured
Little-Parks

FIG. 5. �Color online� Solid circles: the amplitude of oscilla-
tions in Tc, �Tc=�R�H��dT /dR�, derived from the experimentally
measured oscillation amplitude, �R, and the temperature derivative
dR /dT. The solid black line connecting the experimental points is a
guide to the eyes. The solid blue line presents the change in Tc,
�Tc

LP, that one would expect from the Little-Parks effect. Note that
the two scales differ by 2 orders of magnitude.
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cally oscillating values of �N−H /H0�. The third term in Eq.
�1� is the energy of the magnetic dipole moment, ��T�
=�0w

2 /32���T�, associated with a vortex or an
antivortex.33

As fluxoid transitions of higher order, N→N+m with
�m�
2, are statistically less significant, we consider fluxoid
transitions accomplished by only one vortex or antivortex
entry or exit. Thermodynamic averaging over the above four
types of excitation energies, �Ei

j, yields an effective potential
barrier, ��E	,

��E	 = 

i�in,out

j�+,−

�Ei
je−�Ei

j/kBT� 

i�in,out

j�+,−

e−�Ei
j/kBT. �2�

Using Eq. �1� one obtains

��E�T,H�	 = Ev + E0/2 − E0�N − H/H0�tanh�E0�N − H/H0�
kBT



− �H tanh��H

kBT
�

� Ev − E0�N − H/H0�tanh

��E0�N − H/H0�
kBT


 − �H tanh��H

kBT
� . �3�

In the approximations made in Eq. �3� we assumed that
Ev�E0, which is especially valid for narrow rings, r�w.
The first term in Eq. �3�, Ev�T�, describes the zero-field ex-
citation energy as a function of temperature, since the other
two terms vanish at zero magnetic field. The second term
describes the periodic part and the third term is responsible
for the monotonic field-dependent “background” �see Fig. 3�.
Note that in this model Ev, E0, and � depend only on tem-
perature.

In the next step, we derive the magnetoresistance follow-
ing Tinkham’s approach in his analysis29 of the resistive tran-
sition in high-Tc superconductors. Replacing the activation
energy in his equations with ��E	 as given in Eq. �3� yields

R

Rn
= �I0� ��E	

2kBT
�
−2

, �4�

where I0 is the zero-order modified Bessel function of the
first kind. In the following, we show that Eq. �4� in conjunc-
tion with Eq. �3� can explain a rich variety of phenomena,
including the observed transition broadening, the oscillations
of magnetoresistance, the temperature dependence of the os-
cillation amplitude, and the shape of the monotonic back-
ground on which the magnetoresistance oscillations are su-
perimposed.

Equations �1�–�4� are applicable to a single loop of radius
r and can also apply to a wire for which r→�. In applying
these equations to a network of decoupled loops intercon-
nected by relatively long wires �see Fig. 1�, we note that the
total resistance of such a network is R=Rloop+Rwire, where
Rloop and Rwire are the resistances of a small loop and of a
single interconnecting wire, respectively. Expressions for
Rloop and Rwire can be obtained on the basis of Eq. �4�,

R = Rn
loop�I0� ��Eloop	

2kBT
�
−2

+ Rn
wire�I0� ��Ewire	

2kBT
�
−2

,

�5�

where ��Eloop	 and ��Ewire	 are given in Eq. �3� by including
and omitting the E0 term, respectively. �The term E0 is re-
sponsible for the oscillations that are absent in the wires.�
For the network described in Fig. 1, Rloop and Rwire are 22%
and 78%, respectively, of the measured Rn=76 � at Tc
=32 K, reflecting the relative lengths of the short and the
long wires in the network.

A. Transition broadening at zero field

The solid blue line in Fig. 2 shows a fit to the data points
of the resistance in a patterned film in the transition region,
using Eq. �5� in the zero-field limit. Note that in this limit
��Eloop	 and ��Ewire	 reduce to Ev�T�. This fit yields d
=23.4 nm, w=21 nm, Tc=32 K, Rn=76 �, �0=750 nm,
and �0=2.5 nm. The calculated resistance is in a reasonably
good agreement with the experimental data, indicating that
the transition broadening is primarily due to enhanced vortex
motion across narrow wires due to reduced Ev. Equation �5�
does not account for the anomalous resistive peak observed
at elevated temperatures. A similar peak was observed in
other superconducting nanostructures22–24 but its origin is
still controversial.

The dashed line in Fig. 2 shows an attempt to fit the
resistance data of the patterned film to the Halperin-Nelson
formula for 2D superconductors, based on vortex-antivortex
unbinding.21 In the calculation of this curve we assumed a
BKT transition temperature, TBKT=27.5 K, and the
“fluctuation-corrected BCS critical temperature,” TBCS
=32 K. Apparently, this model does not account for the tem-
perature dependence of the magnetoresistance measured in
our nanoloops except for a limited temperature range in the
immediate vicinity of �27.5 K. At higher temperatures the
Halperin-Nelson formula describes “fluctuation-corrected
BCS behavior,” which does not explain our results.

B. Oscillations amplitude—temperature dependence

As the origin of the oscillations is in the small loops, in
the following we derive an expression for the oscillations
amplitude based on Eq. �3�. We apply this equation for low
fields such that the term −�H tanh��H /kBT� in the excitation
energy �Eq. �3�� is small compared to Ev. Using the approxi-
mation tanh�E0�N−H /H0� /kBT��E0�N−H /H0� /kBT in the
periodic term, one obtains

R

Rn
� �I0�Ev/2kBT − �E0�N − H/H0�/kBT�2/2��−2, �6�

which is an oscillating function of the magnetic field.
One can approximate the amplitude of the oscillations,

�R�T�, as the difference between the zero-field curve,
R�T ,H=0�, and the shifted resistance curve R�T ,H=H0 /2�.
If the difference is relatively small, �R can be approximated
as
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�R �� dR

d�E	
�

H=0
�E = Rn

I1�Ev/2kBT�
I0�Ev/2kBT�3� E0

2kBT

2

, �7�

where �E is the amplitude of periodic change in the excita-
tion energy with the field and I1 is the first-order modified
Bessel function of the first kind. This equation, which was
derived for a single loop, is also valid for the network if we
replace Rn with Rn

loop, because the origin of oscillations is in
the small loops.

We note that Ev and E0 are functions of two length scales,
�0 and �0. The calculated amplitude, using Eq. �7� with �0
=750 nm, �0=2.5 nm, r=52.8 nm, d=23.4 nm, and w
=21 nm, is shown as the solid line in Fig. 4. A fairly good
agreement between the experimental data and the theoretical
curve is obtained. We note that the values of the parameters
�0 and �0 may be influenced by the lithography process,
which may cause damage in regions near the surface and
sides and make the effective thickness and width signifi-
cantly smaller than the nominal values.

It should be mentioned that an earlier work has found
large-amplitude magnetoresistance oscillations in a different
nanostructure made of two low-Tc superconducting
nanowires.34,35 These oscillations were attributed to the field-
driven modulation of barrier heights for phase slips. As that
interpretation relates to one-dimensional superconducting
wires �w���, it may not be directly applicable to our high-Tc
loops in which the wire width is an order of magnitude larger
than the coherence length.

C. Magnetoresistance oscillations—field dependence

Figure 6 shows a comparison of the field dependence of
magnetoresistance measured at 29.5 K �open circles� with
the one calculated using Eq. �5� �the solid gray line� and
taking Ev=94 and E0=72 in the units of kB and �=28 in the
units of kB /T. A good agreement between the calculated
curve and the experimental data is seen only at low fields. As
the field increases, the experimentally measured amplitude
decreases while the calculated amplitude remains almost
constant. The agreement between the theory and the experi-
ment can be extended to high fields if we take into account
the distribution of the size of loops in the patterned film. As
loops of different size give different period of oscillations,
averaging over a size distribution of the small loops causes a
decrease in the oscillations amplitude. We can account for
this size spread assuming an equal-size distribution of 	8%
around the median value of 52.8 nm and then average over
the contributions to R�H� from loops of different sizes. This
procedure yields a good fit �the solid black curve in Fig. 6�
over a large field range.

It should be noted that a decay of the magnetoresistance
oscillations at high fields was observed not only in
networks5–7 but also in low-Tc cylinders2–4 and, more re-
cently, in a high-Tc superconducting single ring.19 The latter
observation may be ascribed to variation in the order param-
eter along the radial direction across the relatively wide ring
�270–300 nm�, creating a discrete number of concentric in-
dependent domains where supercurrent density is different
from zero.19 In low-Tc cylinders2–4 the oscillations originate
from the Little-Parks effect, i.e., from the changes in Tc with
field. The resulting magnetoresistance changes are propor-
tional to dR /dT which decreases as the field increases.

TABLE I. The values of Ev and � at different temperatures.

T
�K�

Ev
�K�

�
�K/T� Ev /2kBT

� /2kBT
�1/T�

30 63 21 1.1 0.4
�� � 129.5 93.5 30 1.6 0.5

29 134 41 2.3 0.7

28 243 77 4.3 1.4 ��1

27 349 104 6.5 1.9
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FIG. 6. Magnetoresistance oscillations at 29.5 K: measured
�open circles� and calculated using Eq. �5� �the solid gray line�. The
solid black line is calculated with the same equations but assuming
a size distribution of the loops, resulting in the spread of 	8% in
H0 around the mean value of �2300 Oe.
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FIG. 7. �Color online� Theoretical fits of the nonoscillating
background �the line connecting the minima of the oscillatory mag-
netoresistance� to the experimental data �black lines� taking into
account �a� only vortices �left panel, red lines� and �b� both vortices
and antivortices �right panel, blue lines�.
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D. Monotonic field background

We define the background as the line connecting the
minima points of the oscillatory magnetoresistance. Thus, in
calculating the background, the periodic term included in
��Eloop	 of Eq. �5� is neglected as it takes zero value at fields
mH0 with integer m. Assuming that only vortices are present
in the system the resistance would be

Rbackgr = Rn
loop�I0��E0 − ��H��/�2kBT���−2

+ Rn
wire�I0�− ��H�/�2kBT���−2. �8�

In the presence of both vortices and antivortices, ��H� in Eq.
�8� has to be replaced by �H tanh��H /kBT�. Two fits of
expression �8� to the experimental data at different tempera-
tures are shown in Figs. 7�a� and 7�b�, the first assuming the
presence of vortices alone and the second assuming the pres-
ence of both vortices and antivortices. It can be seen clearly
that taking into account only vortices fails to explain the
background at temperatures above �28.5 K while taking
into account both vortices and antivortices provides a much
better description of the experimental results.

The fits shown in Fig. 7�b� yield the values of Ev and � at
different temperatures listed in Table I. These values de-
crease with temperature as predicted in Ref. 33 and are of
same order of magnitude as the calculated values of Ev
=�0

2 ln�2w /���T�� /8�2��T� and ��T�=�0w
2 /32���T�.

The need to account for antivortices in explaining the
magnetoresistance background at high temperatures becomes
apparent by considering the probabilities PV and PAV of ther-
mally excited vortex and antivortex in a superconducting
wire. These can be expressed as PV�T ,H��exp�−�EV
−��H�� /kBT� and PAV�T ,H��exp�−�EV+��H�� /kBT�, re-
spectively. In Fig. 8 we show the calculated PV and PAV as a

function of temperature for different fields. From these
curves it is clear that at high magnetic fields the probability
of antivortices is highly suppressed. However, at sufficiently
high temperatures antivortices occur with a relatively high
probability even at high fields.

IV. SUMMARY AND CONCLUSIONS

In uniform �unpatterned� films the activation energy for
vortex creep usually decreases monotonically with the ap-
plied magnetic field.29–31 In contrast, in films nanopatterned
into a network of loops, this activation energy becomes os-
cillatory, because moving vortices interact with the periodi-
cally oscillating current induced in the loops. The activation
energy also includes a term that varies monotonically with
the applied field because of magnetic interaction of vortices
and antivortices with the applied field. The combination of
monotonic and oscillatory terms of the activation energy
gives rise to magnetoresistance oscillations superimposed on
a monotonically increasing background. On the basis of this
model, we have derived analytical expressions for the mag-
netoresistance oscillations and for the background and
showed good quantitative agreement with the experimental
results obtained from an array of noninteracting nanosized
loops in a La1.84Sr0.16CuO4 film.

In analyzing the monotonic background of magnetoresis-
tance we showed that it is necessary to account for the pres-
ence in the film of antivortices alongside with vortices, es-
pecially at elevated temperatures. This finding may have an
implication on the debated BKT transition, which predicts
dissociation of vortex-antivortex pairs above the transition
temperature in thin superconducting films. Further study of
the possibility of manifestation of Berezinskii-Kosterlitz-
Thouless transition in our experiment requires an extension
of our analysis to include the contribution of vortex-
�anti�vortex interactions to the activation energy.
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4 SUMMARY AND CONCLUSIONS

In this work, we designed and fabricated a new type of a network – the 

double network – consisting of two interlaced sub-networks of small and large 

loops. We demonstrated, both theoretically and experimentally, uncorrelated 

behavior of fluxoids in the sub-network of the small loops. Namely, the vortex 

occupation of the small loops increases in steps, resembling the behavior of an 

ensemble of nearly decoupled loops. In addition, the loop energy is a periodic 

function of the ratio between the flux penetrating a loop and a superconducting 

flux quantum, with a waveform identical to that of a single isolated loop.  

Measurements of the magnetoresistance of double networks made of 

MBE grown La1.84Sr0.16CuO4 film, with a small loop side ranging typically from 

150 to 75 nm, revealed large oscillations with flux periodicity ehc 2/  and 

amplitude much larger than expected from the Little-Parks effect. Also, the 

temperature dependence of the oscillations' amplitude was inconsistent with 

the Little-Parks prediction. 

To explain our experimental results, we developed a new model which 

ascribes the magnetoresistance oscillations in high-Tc superconductors to the 

periodic changes in the interaction between thermally excited moving vortices 

and the oscillating persistent current induced in the loops. We found a good 

agreement between the experimental results and the predictions of this fluxoid 

dynamic model for both the size of oscillations' amplitude and its temperature 

dependence. We note that although, in general, magnetoresistance 

oscillations originate from both the Little-Parks effect and the fluxoid dynamics, 

in high-Tc superconductors the contribution of the Little-Parks effect is relatively 

small because of the short coherence length. On the other hand, the 

contribution of the vortex dynamics is large in high-Tc superconductors due to 

the strong thermal fluctuations.  

We extended our dynamic model to include the interaction between the 

external field and the magnetic moment of the vortices and antivortices. The 

extended model accounts quantitatively for the monotonic background on 

which the magnetoresistance oscillations are superimposed. Moreover, an 

analysis of the background indicates that in the patterned film both vortices 
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and antivortices are present, consistent with the superconducting phase 

transition scenario proposed by Berezinskii, Kosterlitz, and Thouless.  

The double network may serve as an efficient tool in the search for the 

recently predicted ehc 4/  and ehc /  periodicities [34-39]. The absence of such 

periodicities in the present work is at variance with these theoretical 

predictions. However, efforts to discover these periodicities should continue by 

extending this work to higher and lower doping across the entire phase 

diagram, in La2-xSrxCuO4 and La2-xBaxCuO4 [52]. 
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   תקציר

על -בסוג חדש של רשת מוליכת יםשל פלקסואידדינמיות תופעות  חקרנועבודה זו ב

לתכנון רשת זו  מוטיבציהה. לולאות גדולות וקטנותות מהמורכברשתות - י תתתשהמשלבת 

 יצרנו. בודדותכלולאות  מתנהגותאשר  קטנות לא מצומדותמערך של לולאות ליצור  ההיית

 חלקים פני שטחעם  La1.84Sr0.16CuO4מוליך על של דקות משכבות כאלה ' כפולות' תרשתו

די כרזולוציה גבוהה עם רונים קרן אלקט תהשתמשנו בליתוגרפי. אטומים בודדיםשל  הברמ

 30-ננומטר אשר מורכבות מחוטים ברוחב של כ 75עד  150אלפי לולאות בגדלים של  להכין

  .על בטמפרטורות גבוהות-ממוליכיעד כה הלולאות הקטנות ביותר שהוכנו  הן אלו. ננומטר

 על סימולאציות בהתבסס אפיינו תיאורטית את ההתנהגות הסטטית של הרשת הכפולה 

-יתת יתדיכוטומית של שהראה התנהגות מחקר תיאורטי זה . 'שדה ממוצע' ימחשב וחישוב

בעוד האכלוס של  החישובים מראים כי ,בפרט. הכפולהאת הרשת  ותהמרכיבהרשת 

האכלוס של הלולאות , הטבעות הגדולות גדל באופן ליניארי עם השדה המגנטי החיצוני

התלות , יתרה מזו. עבור אכלוס של לולאה בודדתהקטנות גדל באופן מדרגתי כפי שמצופה 

דומה לזו של  תהקטנו לולאותהרשת של ה- תתשל האנרגיה בשדה המגנטי החיצוני עבור 

הרשת של הטבעות הגדולות דומה לזו של רשת -בעוד שהאנרגיה של תת, טבעת בודדת

במדידות של  יגם כן באופן ניסיונטבעת בודדת נצפו תכונות אופייניות ל .רגילהריבועית 

  .La1.84Sr0.16CuO4-משיצרנו התנגדות של רשתות כפולות -מגנטו

תנודות מחזוריות עם מחזור שמתאים  הראו ל"ברשתות הנ התנגדות- מדידות של מגנטו

ehc, מגנטישטף ליחידה קוונטית של  2/0 =Φ )h - פלאנק של קבוע ,c  -  מהירות האור

משרעת התנודות , אולם .Little-Parksמאפקט כפי שמצופה , )המטען של אלקטרון - e, בריק

התלות , יתר על כן .זההמצופה מאפקט מהייתה גדולה בשני סדרי גודל שנמדדה 

ירות סת .Little-Parksאפקט ציפיות של ל לא התאימהבטמפרטורה של משרעת התנודות 

התנגדות - אלה הובילו אותנו לחיפוש של מנגנון אחר אשר אחראי לתנודות של המגנטו

תלות ( Little-Parksבניגוד למנגנון הסטטי של . על בטמפרטורות גבוהות-בלולאות של מוליכי

שמקורו אף הוא בקוונטיזציה של המנגנון שהצענו הוא דינמי , )בשדה החיצוני cTשל 

  . הפלקסואיד בלולאות

י ''ההתנגדות נובעת מניתור של וורטקסים דרך הלולאות אשר מונע ע פיתחנובמודל ש

והתנודות בהתנגדות נובעות משינויים מחזוריים באנרגית , אקטיוואציות תרמיות

השינויים המחזוריים באנרגית האקטיוואציה . האקטיוואציה הדרושה למעבר של וורטקס

עם זרמי פלקסואיד בלולאה אשר משתנים באופן  של הוורטקסים אינטראקציהי ''נגרמים ע



 

 ב

 

טובה מאוד בין תוצאות הניסוי לבין המודל הדינאמי הן התאמה מצאנו  .מחזורי עם השדה

  .טמפרטורהב שלה עבור משרעת התנודות והן עבור התלות

הרחבנו את המודל הדינאמי , התנודותמורכבות כדי להסביר את הרקע המונוטוני עליו 

התאמת . וורטקסים עם השדה החיצוני- ל אינטראקציה של וורטקסים ואנטיש הכללהי ''ע

-קיומם של וורטקסים ואנטיאת חשפה ו הראתה התאמה טובה מאד המודל לרקע הנמדד

של  אפשרית עם התרחשותבהתאמה  יםאלו עומדממצאים . דומהוורטקסים בהסתברות 

  .La1.84Sr0.16CuO4בשכבות דקות של  Berezinskii-Kosterlitz-Thoulessמעבר 

 ותעל בטמפרטור- התנגדות המאפיינות לולאות של מוליכי- התנודות הגדולות במגנטו

מציעים את הרשתות , ברשתות ן סיגנל לרעש אשר מתקבליםגבוהים ביהיחסים הו, גבוהות

על בטמפרטורות גבוהות ככלי יעיל לחיפוש אחרי מחזוריות בלתי -הכפולות העשויות ממוליכי

ניתן ליישם רשתות כפולות  ,במיוחד. על לא קונוונציונליים-שטף מגנטי במוליכי שלרגילה 

ehcשטף מגנטי של  שלמחזוריות חיפוש אחר בכאלה  4/2/0 =Φ  ושלehc /2 0 =Φ  אשר

בפונקצית הגל של  d-waveועם סימטרית  stripesעל עם -במוליכילאחרונה נובאו תיאורטית 

י הרחבה של ''צריכים להמשך ע זו מחזוריותמאמצים לגלות . בהתאמה, Cooperזוגות 

 Ba-ו Srעם ריכוזי  La2-xBaxCuO4ושל   La2-xSrxCuO4בתרכובות של מדידותעבודה זו ל

  .משתנים
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