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Abstract. The nature of the interaction between fluxoids and between them and the external 

magnetic field is studied in one-dimensional superconducting networks. An Ising like 

expression is derived for the energy of a network revealing that fluxoids behave as repulsively 

interacting objects driven towards the network center by the effective applied field. 

Competition between these two interactions determines the equilibrium arrangement of 

fluxoids in the network as a function of the applied field. It is demonstrated that the fluxoids 

configurations are not always commensurate to the network symmetry. Incommensurate, 

degenerated configurations may be formed even in networks with an odd number of loops. 

1.  Introduction 

The macroscopic quantum nature of superconductivity is manifested in loops, and generally in 

multiply-connected superconductors, in quantization of the ‘fluxoid’ defined as: (4𝜋𝜆2/𝑐) ∮ 𝑗 ∙ 𝑑𝑙 +  𝛷, 

where j is the shielding current in a closed loop, λ is the penetration depth, and Φ is the magnetic flux 

threading the loop [1]. In the early days of superconductivity, it was predicted by Fritz London [2], 

and later confirmed experimentally by Little and Parks [3], that the fluxoid must be an integer multiple 

of the flux quantum 𝜙0 = ℎ𝑐/2𝑒. Fluxoid quantization effects have been studied extensively, both 

theoretically and experimentally, in a variety of superconducting networks [4-12]. However, most of 

these studies adopt the mean field approach, providing no intuitive understanding of the interaction 

between fluxoids and the mechanism governing their arrangement in superconducting networks. The 

purpose of the present work is to elucidate the nature of the interaction between fluxoids and to clarify 

the physics behind their arrangements in networks. Analyzing the simplest case of a superconducting 

one-dimensional network (‘ladder’), we show that fluxoids act as repulsively interacting objects 

dragged towards the ladder center by their interaction with the externally applied field. A competition 

between these two interactions determines the equilibrium positions of the fluxoids in the network as a 

function of the applied field. To demonstrate this concept we present calculated results of fluxoid 

arrangements in several examples of finite 1D and 2D networks. 

2.  Analysis 

Our analysis is based on the “current squared” model (known as the “J
2
 model”) [6],  In which the 

kinetic energy of the network is calculated as the sum of the squared currents over all the network 

wires. The number and arrangement of the fluxoids is determined by the requirement of minimum 

energy.  

Consider a superconducting ladder of finite length, consisting of N square loops of unit side, as 

shown in Figure 1. 

http://creativecommons.org/licenses/by/3.0
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Figure 1: Finite ladder consisting of N square loops. 

 

The fluxoid quantization equation for the loop 𝑖 reads: 

 

                                       4𝐽𝑖 − 𝐽𝑖−1 − 𝐽𝑖+1 = 𝑛𝑖 − 𝜙/𝜙0,                                         (1) 

 

where 𝑛𝑖 is the vorticity of the loop 𝑖, 𝜙 is the flux threading this loop, and by definition 𝐽𝑖  =  0 for 

0 >  𝑖 or 𝑖 >  𝑁. For simplicity, the coefficient 4πλ
2
/c is taken as 1. According to Eq. (1), the set of 

the fluxoid quantization equations for all the loops can be written as a matrix equation: 

 

                                                      𝐴̂ ⋅ 𝐽 = 𝑛⃗⃗ −
𝜙⃗⃗⃗⃗

𝜙0
,                                                             (2) 

 

where the elements of the matrix 𝐴̂:  𝐴𝑖𝑗 = 4𝛿𝑖,𝑗 − 𝛿𝑖,𝑗−1 − 𝛿𝑖,𝑗+1, and 𝛿𝑖,𝑗 is the Kronecker δ. The 

current vector 𝐽 can be calculated from Eq. (2) by inversion: 

 

𝐽 =  𝐴̂−1(𝑛⃗⃗ −
𝜙⃗⃗⃗⃗

𝜙0
).                                               (3) 

 

Denoting the matrix 𝐴̂−1 as 𝐵̂,   Eq. (3) can be written as a set of equations: 

 

𝐽𝑖 = ∑ 𝐵𝑖𝑗
𝑁
𝑗=1 (𝑛𝑗 −

𝜙

𝜙0
),      𝑖 = 1. . 𝑁.                                           (4) 

 

Using the 𝐽2 model, knowledge of 𝐽𝑖 allows calculation of the energy 𝐸𝑖 of the loop 𝑖: 

𝐸𝑖 = 2𝐽𝑖
2 +

1

2
(𝐽𝑖 − 𝐽𝑖−1)2 +

1

2
(𝐽𝑖 − 𝐽𝑖+1)2 +

1

2
𝐽1

2𝛿1,𝑖 +
1

2
𝐽𝑁

2 𝛿𝑁,𝑖 

= 𝐽𝑖[3𝐽𝑖 − 𝐽𝑖−1 − 𝐽𝑖+1] +
1

2
𝐽𝑖−1

2 +
1

2
𝐽𝑖+1

2 +
1

2
𝐽1

2𝛿1,𝑖 +
1

2
𝐽𝑁

2 𝛿𝑁,𝑖, 

and the total energy 𝐸 of the network: 

 

𝐸 = ∑ 𝐸𝑖  𝑁
𝑖=1 = ∑ {𝐽𝑖( 3𝐽𝑖  − 𝐽𝑖−1 − 𝐽𝑖+1) +  

1

2
𝐽𝑖−1

2 +
1

2
𝐽𝑖+1

2 }𝑁
𝑖=1 +

1

2
𝐽1

2 +
1

2
𝐽𝑁

2  .      (5) 

 

Using Eq. (1) and realizing that ∑ {−𝐽𝑖
2 +  

1

2
𝐽𝑖−1

2 +
1

2
𝐽𝑖+1

2 }𝑁
𝑖=1 +

1

2
𝐽1

2 +
1

2
𝐽𝑁

2 = 0, Eq. (5) becomes 

 

𝐸 = ∑ 𝐽𝑖 (𝑛𝑖 −
𝜙

𝜙0
)𝑁

𝑖=1 .                                               (6) 

Inserting 𝐽𝑖 from Eq. (4) yields 

𝐸 = ∑ ∑ 𝐵𝑖𝑗 (𝑛𝑗 −
𝜙

𝜙0
) (𝑛𝑖 −

𝜙

𝜙0
)𝑁

𝑗=1
𝑁
𝑖=1 = ∑ 𝐵𝑖𝑗 (𝑛𝑖𝑛𝑗 − 2

𝜙

𝜙0
 𝑛𝑖 + (

𝜙

𝜙0
)

2
)𝑖𝑗 .    (7) 
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The above expression for the total energy, 𝐸, is reminiscent of the Ising model for the energy of a 

spin configuration, having the form ∑ 𝐽𝑖𝑗𝑆𝑖𝑆𝑗𝑖𝑗  - 𝜇 ∑ ℎ𝑗𝑆𝑗𝑗  [13]; 𝑛𝑗, and 𝐵𝑖𝑗 playing the role of the 

Ising spin Sj and the exchange interaction term 𝐽𝑖𝑗, respectively. The first term on the right hand side 

of Eq. (7), (∑ 𝐵𝑖𝑗𝑛𝑖𝑛𝑗𝑖𝑗 ), represents the interaction between fluxoids, including the self-interactions 

∑ 𝐵𝑖𝑖𝑛𝑖
2

𝑖 . The second term, (−2
𝜙

𝜙0
∑ 𝑛𝑖𝑖𝑗 𝐵𝑖𝑗), expresses the interaction between the fluxoids and the 

effective magnetic field. The third term, (𝜙/𝜙0)2 ∑ 𝐵𝑖𝑗𝑖𝑗  , is constant, independent of the vorticities, 

and thus may be ignored. 

For the matrix 𝐴̂ given in Eq. (2), 𝐵̂ = 𝐴̂−1  is a symmetric matrix with elements [14]: 

 

 𝐵𝑖𝑗 = 𝐶𝛾𝑖−𝑗−1 (1 −  η𝑖)(1 −  η𝑁+1−𝑗), for 𝑖 ≤ 𝑗.                          (8)    

 

where γ = 2 + √3 , 𝜂 = (2 − √3)/(2 + √3) and C = 1/(1 − η)(1 − η𝑁+1). Due to the symmetry of 

𝐵̂,  𝐵𝑖𝑗 for 𝑖 > 𝑗 can be calculated as  𝐵𝑗𝑖 using Eq. (8).  Since 𝜂 ≪ 1, C is approximately 1 and  𝐵𝑖𝑗 

can be approximated as 𝛾−(|𝑖−𝑗|+1), for all 𝑖 and 𝑗. Thus Eq. (7) becomes 

 

𝐸 = ∑ 𝛾−(|𝑖−𝑗|+1) (𝑛𝑖𝑛𝑗 − 2
𝜙

𝜙0
 𝑛𝑖 + (

𝜙

𝜙0
)

2
)𝑖𝑗   .                                            (9) 

 

The above expression shows that fluxoids can be treated as repulsively interacting objects, with 

interaction energy decreasing exponentially with their separation. In order to minimize the total 

energy, the repulsive interaction between fluxoids tends to keep them away from each other. On the 

other hand, the interaction between the fluxoids and the effective magnetic field, represented by the 

second term in Eq. (9), (−2𝜙/𝜙0 ∑ 𝑛𝑖𝑖 ∑ 𝛾1
−(|𝑖−𝑗|+1)

 𝑗 ) tends to drive the fluxoids away from the 

network edges towards the network’s center. This is because the effective magnetic field 

 −2(𝜙/𝜙0) ∑ 𝛾1
−(|𝑖−𝑗|+1)

∝ cosh(ln(𝛾1) ((𝑁 + 1)/2 − 𝑖))𝑗  is minimum at the center of the ladder 

(𝑖 = (𝑁 + 1)/2). Thus, while the external magnetic favors assembling the fluxoids near the ladder 

center, the fluxoids repel each other tending to keep themselves apart. Competition between these two 

opposite interactions determines the equilibrium arrangement of fluxoids in the network as a function 

of the applied field.  

       Considering the first fluxoid which enters the ladder, it always appears at the center of the 

network (or next to it, in a ladder with an even number of loops) as it is affected only by the external 

field which drives it to the center. As the field increases, a second fluxoid appears, pushing the first 

one out of its central position and both fluxoids arrange themselves in an optimum configuration 

around the center, keeping apart from each other and away from the network edges. The same 

principle determines the arrangements of the next fluxoids entering the ladder as the field further 

increases. 

       Our analysis of superconducting ladders can be extended to two dimensional superconducting 

networks. The basic idea that the fluxoid arrangements are determined by a competition between the 

fluxoid repulsive interaction and their interaction with the applied field, remains the same. However, 

computations of these interactions, and the resulting fluxoid equilibrium configurations in two 

dimensional networks become more complicated. The occupation process in 1D and 2D 

superconducting networks are demonstrated in the following section. 

3.  Simulations 

       As an example, we present calculated results for ladders with 7, 8 and 9 loops. In each case, the 

energy of the ladder, as a function of the loops vorticities and the external field, was calculated using 

Eq. (7) and the exact expression for the elements  𝐵𝑖𝑗 (Eq. 8). For each given field the fluxoid 

arrangement (𝑛1, 𝑛2, … , 𝑛𝑁) which minimizes the energy was determined.  
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       The solid, dashed, dashed-dotted curves in Figure 2 show the minimum energy as a function of 

the normalized flux 𝜙/𝜙0 in ladders with 7,8 and 9 loops, respectively. The crests in each curve 

indicate a change in the fluxoids configurations in the ladder. Thus, in the ladders with 7,8 and 9 

elements the total number of configurations is 7,8 and 9, respectively. It is interesting to note that the 

number of configurations is not necessarily equal to the number of elements. For example, in ladders 

with rectangular loops attached along their long side, a change of the applied field can cause 

rearrangement of the same number of fluxoids, giving rise to an access number of configurations [15]. 

 

 
Figure 2: Energy as a function of the normalized magnetic flux in ladders with 7, 8 and 9 loops. 

 

 
Figure 3: Fluxoid configuration as a function of magnetic flux in ladders with 7, 8 and 9 loops, in the 

first period. An empty loop is colored dark blue, and occupied loop is colored yellow or green. The 

green color indicates degenerated configurations which are incommensurate with the symmetry of the 

ladder.  

 

The fluxoids arrangements as a function of field are illustrated in Figure 3. An empty loop is 

colored blue, and occupied loop is colored yellow or green. The green color indicates degenerated 
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configurations which are incommensurate with the symmetry of the ladder. The ladders with 7 and 9 

loops demonstrate the general rule that when the number of loops is odd, the first fluxoid always 

occupies the loop at the ladder’s center. In ladders with an even number of loops, the first fluxoid 

occupies a degenerated state on either side of the center, as demonstrated by the ladder with 8 loops.  

As the field increases, a second fluxoid enters the ladder, pushing the first one out of its position and 

both fluxoids arrange themselves in an optimum configuration, keeping apart from each other and 

away from the network edges. In the ladder with 9 loops, this configuration conforms the symmetry of 

the ladder, however, this is not the case in the ladders with 7 and 8 elements. As more fluxoids enter 

the ladder with increasing field, rearrangement of fluxoids continues until the last fluxoid enters the 

ladder’s center completing one period in which each loop is occupied with one fluxoid. Occupation of 

the loops in the following periods follows the same pattern. 

Figure 4 illustrates calculated results for a 3x3 square network, based on the 𝐽2 model. Note that the 

first fluxoid appears in the central loop of the network, as in a ladder. Also note that the number of 

different configurations (11) exceeds the number of loops in the network, due to rearrangement of the 

same number of fluxoids as the field increases. This situation occurs in configurations of 3 and 6 

fluxoids. Among the 11 different configurations, there are 6 degenerated states that are 

incommensurate to the network symmetry (marked in green in Fig. 4). The degenerated configurations 

are obtained by applying the symmetry operations of the network. Thus, two degenerated 

configurations correspond to N=2,7, and four degenerated configurations correspond to each 

configuration with N=3,6. 

We note that calculations based on the de-Gennes-Alexander equations for a network yield quite 

different results [16]. For example, following the appearance of the first fluxoid at the network central 

loop, the second fluxoid appears at the same loop creating a double fluxoid at the network center. This 

configuration has a higher energy than that the configuration of two separated fluxoids derived from 

the ′𝐽2 model’ (see Fig. 4). Involving the appearance of anti-fluxoids in the network, the calculation 

based on the de-Gennes-Alexander equations, predicts 9 configurations all of which are commensurate 

to the network symmetry. It should be noted, however, that by minimizing the Ginzburg–Landau free 

energy, asymmetric fluxoid patterns have been reported for a 10x10 network [17]. Finally we note that 

in our calculations based on the J
2
 model, the fluxoid configurations are temperature independent, as 

the only temperature dependent factor in this model is 4𝜋𝜆2/𝑐 which scales the current density, and 

the square of this factor scales the energy. 

 

 
Figure 4: Fluxoid configurations in 3x3 square network calculated in the framework of the 

′𝐽2 model’. An empty loop is colored dark blue, and occupied loop is colored yellow or green. The 

green color indicates degenerated configurations which are incommensurate with the symmetry of the 

ladder. 
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4.  Summary and conclusions 

       An Ising-like expression derived for the energy of fluxoids in a 1D superconducting network 

reveals that the fluxoids act as repulsively interacting objects with an interaction energy that decreases 

exponentially with their relative separation. In this expression, the effective magnetic field drives the 

fluxoids toward the network center. The competition between these two interactions determines the 

equilibrium configuration of the fluxoids in the ladders. These configurations may be incommensurate 

to the symmetry of the ladder, in ladders with even as well as odd number of loops. Fluxoids in 2D 

networks follow a similar pattern, i.e. they repel each other and are driven to the center by the applied 

field. 
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