
Thickness dependence of dendritic flux avalanches  

in YBa2Cu3O7-x films 

 

E. Baruch-El1, M. Baziljevich2, T.H. Johansen2,3, A. Shaulov1 and Y. Yeshurun1 

1 Department of Physics, Institute of Superconductivity and Institute of Nanotechnology and 

Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel 
2 Department of Physics, University of Oslo, P.O. Box 1048, Blindern, N-0316 Oslo, Norway 
3 Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 

2522, Australia 

 

Abstract. By implementing a unique magneto-optical system with ultrafast magnetic-field 

ramping-rate capability (up to 3 kT/s), we have been able to routinely generate and image 

dendritic flux instabilities in YBa2Cu3O7-x films. In the present work we study the effect of the 

film thickness on the dendritic instability. Dendritic avalanches in 50 - 600 nm thick films were 

magneto-optically imaged at 7 K, after ramping the magnetic field from zero to 60 mT at 

different rates. The data reveal a remarkable change in flux morphologies between the thin and 

the thicker films. While the former (50-250 nm) display well-developed dendritic patterns, the 

latter (350-600 nm) exhibit few avalanches with favored branch directions parallel to the film's 

edges. Several possible explanations for this behavior are discussed.   

 

1. Introduction  

Dendritic flux instabilities have been observed in superconducting films such as MgB2 [1-3], Nb [4], 

NbN [5], and a-MoSi [6], after exposing them to an external perpendicular magnetic field. The 

phenomenon, explained in several theoretical works [7-9], reflects a thermomagnetic runaway. It occurs 

when thermal fluctuations locally release some vortices out of their pining sites, enabling the vortices 

to move and heat the superconductor, which in turn further reduces the pinning and increases vortex 

motion. If the heat generated in the film is not dissipated quickly enough into the substrate, a 

thermomagnetic runaway occurs, resulting in a dendritic flux avalanche pattern in the film.      

Experiments have demonstrated that high-temperature superconductors, such as YBa2Cu3O7-δ (YBCO), 

are very stable, preventing the formation of dendritic avalanches. In fact, it was shown that local laser-

heating of the films was necessary to generate such avalanches [10, 11]. Nevertheless, we recently found 

that YBCO films become thermomagnetically unstable when applying fast ramping-rate of the external 

field [12-14]. Exploiting this technique, we investigated different parameters that control the dendritic 

penetration. In a recent publication we studied the effect of the magnetic field ramp rate, identifying the 

threshold rate for generating avalanches at different temperatures [13]. In the present work we focus on 

how the film thickness influences the avalanche behavior. Our results display dendritic avalanches in 

all the studied YBCO films. However, the thin (50-250 nm) films and the thicker (350-600 nm) ones 

show significantly different dendritic patterns. In contrast, the threshold ramp rate values do not show 

any clear trend as the film thickness varies.        

 

 



2. Experimental 

YBCO films (4x4 mm2) with thickness in the range 50-600 nm were epitaxially grown by thermal 

reactive coevaporation [15] on yttrium stabilized zirconia (YSZ) substrate, resulting in films with the c 

axis perpendicular to the surface. The low thermal conductivity of YSZ facilitates the generation of 

dendritic avalanches [14]. Magnetic measurements, using a commercial Quantum Design 

magnetometer, reveal a transition temperature, Tc ≈ 87 K.  All the magneto-optical imaging (MOI) 

measurements described in the next sections were done using our custom-made MOI system that enables 

real-time imaging at rates up to 70,000 frames per second. Furthermore, the magnetic field in this MOI 

system can be ramped up to a field of 60 mT at rates up to 3 kT/s [16].  

3. Results 

MOI experiments using slow field ramping yield images with a smooth flux penetration front, 

consistent with the Bean model [17], see Figure 1. As the number of pinning sites increases with film 

thickness, the effective critical current also increases with thickness. Consequently, thinner films exhibit 

deeper flux penetration.  

  

 

 

 

 

Figure 1. MO images of the YBCO films. The films were zero-field-cooled to 7 K and then exposed to 

a 60 mT magnetic field increased at a rate of several mT/s.   

Repeating the same experiments with a fast field ramp rate (3 kT/s) produced dendritic patterns, 

as shown in Figure 2 and 3 for the thin (50 – 250 nm) and thicker (350 – 600 nm) YBCO films, 

respectively.  

 

 

 

 

 

 

 

 

Figure 2. Dendritic avalanches in the thin YBCO films. The films were zero-field cooled to 7 K and 

then exposed to magnetic field ramped from zero to 60 mT at 3 kT/s.  



 

 

 

  

  

Figure 3. Dendritic avalanches in the thicker YBCO films. The films were zero-field cooled to 7 K and 

then exposed to magnetic field ramped from zero to 60 mT at 3 kT/s.  

 In the thinnest film (50 nm) the avalanches were superimposed on a Bean-like penetration 

profile, where most of the film was penetrated by magnetic flux. The Bean-like profile covers less of 

the area as the film thickness increases, virtually disappearing altogether at 150 nm. The 150 and 250 

nm films exhibit similar avalanche morphology though it seems that the number of branches of each 

trunk reached a maximum at the 150 nm film. As discussed above, thicker films have more pinning sites 

and, therefore provide a stronger resistance against flux penetration; this may explain the slightly less 

developed trees in 250 nm film.  

 As shown in Figure 3, the thicker films (350-600 nm) have much different avalanche patterns. 

In those films, the penetrated flux appears to follow some preferred directions, parallel and perpendicular 

to the sample edges. Moreover, the avalanches do not here develop into tree-like structures.  

 We also made an effort to identify experimentally the effect of the film thickness on the 

minimum ramp rate �̇�𝑡ℎ required for the appearance of the first avalanche [13]. In these experiments, 

the film was first zero-field-cooled (ZFC) to 15 K and then a perpendicular field, Ba=60 mT, was 

applied. The measured �̇�𝑡ℎ values were fluctuating between 0.2 and 0.8 kT/s with no clear trend for the 

film thickness dependence. Additional efforts with different fields at different temperatures were made, 

giving essentially the same result. 

 

4.  Discussion 

In the theoretical analysis of the thermomagnetic runaway, a ‘stability parameter’, τ=tm/th is 

defined [7-9]. This parameter signifies the ratio between the magnetic (tm) and thermal (th) diffusion 

times. A film with a smaller τ has higher tendency for the occurrence of an avalanche. The time tm is 

predicted to increase with the film thickness, d, consistent with the fact that the number of pinning sites 

is larger in thicker films. An indirect evidence for the increase of tm with the film thickness was found 

by dendritic velocity measurements, showing that the flux front velocity of the dendrite decreases as the 

film thickness increases [11]. The direct dependence of tm on d implies an increase of τ with d. Thus, 

thicker films are expected to show better resistance to dendritic flux avalanches.  

Our MO images, Figures 2 and 3, are consistent with the above prediction, as the avalanches in 

the thicker films are less developed and a larger part of these films remain superconducting. The above 

arguments lead also to an expectation for an increase of �̇�𝑡ℎ, the threshold field ramp rate, as the film 

thickness increases. However, as indicated above, we could not detect a clear trend for �̇�𝑡ℎ as the film 

thickness varied. We believe that the absence of a clear thickness dependence results from local damages 

created during the generation of the dendritic avalanches [12]. Such damage often forms permanent gaps 

in the film, which in turn amplifies the local field, and has a significant impact on the following 

instabilities, perturbing the effect of the film thickness on �̇�𝑡ℎ.  



 We turn now to discuss the origin of the preferred directions for the dendritic branches in the 

thicker films (Figure 3). A possible origin may be traced to oriented cracks or similar defects in these 

films. Such defects, however, should also affect smooth flux entry. To test this possibility we performed 

extensive measurements at temperatures above the dendritic threshold temperature, where there is no 

dendritic instability [13]. In these experiments, the thick films were ZFC to 55 K, then exposed to an 

external magnetic field increased at various rates. In all these experiments, the flux penetration was 

smooth and homogeneous, and no indication for guiding defects was found. Additionally, those films 

were checked with scanning electron microscope (SEM) and no sign of such defects was found. It is 

important to note that the YBCO crystalline a-b-axes are aligned at 45 degrees with respect to the film 

edges, and although thicker films have a higher tendency to crack (as there is more elastic energy in the 

films), those cracks would also be oriented 45 degrees with respect to the edge of the film [18]. In light 

of the above, we conclude that defects cannot be responsible for the observed preferred direction of 

dendritic branches.  

Another possible origin for the flux direction preference may be related to the square geometry 

of our films. Screening currents along the film edges apply on the penetrating flux a Lorentz force 

directed perpendicular to these edges (see, e.g., Figure 4 of Ref. [1]). To test this possibility, we etched 

(with Argon plasma) few of the 600 nm thick YBCO films, preparing the different geometries (trapezoid 

and circle) displayed in Figure 4. The films were field cooled (FC) with -60 mT to 7 K, then exposed to 

a 60 mT field ramped up at a rate of 3 kT/s. The FC procedure facilitates the triggering of more 

avalanches, due to extra heating from vortex-antivortex annihilation. As is apparent from the MO images 

of Figure 4, even though the sample geometries have been changed, the preferred directions of the 

avalanche branches still remain as they were in the case of the square sample (see Figure 3), i.e. parallel 

and perpendicular to the original square film edges. We thus conclude that also the film geometry cannot 

be causing the directed flux entry. Thus, the physical mechanism behind the different avalanches 

morphologies remains unresolved.  

  

  

  

 

 

  

  

  

Figure 4. Flux avalanches in 600 nm YBCO films etched to form different geometries: (a) trapezoid, 

and (b) circle. The films were cooled to 7 K in the presence of -60 mT and the MO images were taken 

while ramping up the field to 60 mT at a rate of 3 kT/s. (The two long diagonal lines in the right edge 

of the circle sample are mechanical scratches in the YBCO).  

Finally, we present preliminary results of fractal analysis of the different dendritic 

morphologies. Using the 'box-counting' method [19], the images were covered with a grid, and the 

number of boxes occupied with magnetic flux was counted. A graph of the number of occupied boxes 

versus the box size was then plotted. The slope of this graph represents the fractal dimension of the 

studied image. The above procedure was done for the 150 nm – 600 nm YBCO samples. The 50 nm and 

100 nm films were not included in this study because of the significant Bean-like penetration that adds 

complexity to the fractal dimension analysis. The results of this analysis showed a monotonic decrease 

of the fractal dimension from 1.85 for the 150 nm film to 1.36 for the 600 nm film. The calculated fractal 



dimension may be used as a quantifying parameter of the films stability against dendritic avalanches. 

More experimental work combined with fractal analysis is needed to substantiate such a conclusion.  

 

5. Summary 

MO images of YBCO films exposed to an ultra-fast magnetic field ramp, revealed different 

dendritic morphology for the thin and thicker films. Specifically, we observed a change from dense, 

well-developed tree-like avalanches in the thin films, to avalanches with few branches penetrating along 

favored directions in the thicker ones. The origin of this change in the morphology is still unclear. The 

fractal dimension of the dendritic avalanches is suggested as a quantifying parameter of the sample 

stability against the flux avalanches. Quantifying the parameters governing the dendritic avalanches is 

also important for application of high-temperature superconducting films, as such thermomagnetic 

avalanches limit their potential use and may even cause permanent damage [12].  
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