
Peak effect and square-to-rhombic vortex lattice transition in La2−xSrxCuO4

B. Rosenstein,* B. Ya. Shapiro,† I. Shapiro, Y. Bruckental, A. Shaulov, and Y. Yeshurun
Department of Physics, Bar Ilan University, Ramat Gan 52100, Israel

�Received 27 June 2005; published 17 October 2005�

A theory of structural phase transition of the vortex lattice in tetragonal superconductors is constructed based
on the self consistent harmonic approximation for lattice anharmonicities, within the fourfold-symmetric gen-
eralization of the London model. Thermal fluctuations on the mesoscopic scale are strong enough to affect the
location of the square to rhomb transition line in the T-H plane. We find that the slope of the transition line is
generally negative: thermal fluctuations favor the more symmetric square lattice. The calculated transition line
is concave, and fits the experimental line deduced in LaSCO crystals from the onset of the second magnetiza-
tion peak. Near the transition line the “squash” modulus Csq=2�C11+C12�−C66 is softened leading to enhance-
ment of the critical current, born out in the experiment as a second magnetization peak.
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I. INTRODUCTION

Vortex systems in type II superconductors have become a
convenient object of choice in studying the complex inter-
play between interactions, thermal fluctuations and disorder.
When thermal fluctuations and disorder can be neglected the
system organizes itself into a vortex lattice. However, both
disorder and thermal fluctuations tend to destroy it, creating
a “vortex glass” or a “vortex liquid.” While the melting line
separates the crystalline and liquid phases �dashed line on
Fig. 1�,1 the line defined by the second magnetization peak2

�dash-dotted line on Fig. 1� separates the crystalline solid
�Bragg glass� from the vortex glass phase.3 Originally, it was
widely believed that these two lines are not related and in-
tersect at a point. Recently, however, it became evident
experimentally4–6 and theoretically7 that the two lines con-
stitute just two segments of a single “unified” order-disorder
�OD� phase transition line.5 In Bi2Sr2CaCu2O8+� �BSCCO�
the line in the B-T plane defined by the onset of the second
magnetization peak �SMP� exhibits the �positive slope� “in-
verse melting” phenomenon.4 At the maximum there appears
a Kauzmann point �a noncritical point in which the entropies
of the two phases are equal�. Similar behavior was found in
YBa2Cu3O7−� �YBCO�.6

Apparently, however, the high Tc superconductor
La2−xSrxCuO4 �LaSCO� constitutes an exception. The melt-
ing line and the SMP line clearly cannot be considered as
segments of a single OD line. First, unlike in BSCCO and
YBCO, the SMP line in LaSCO has a negative slope8,9 and
therefore cannot be considered as the inverse melting section
of the OD line. Second, very recently, Divakar et al.,10 using
muon spin rotation ��SR� and small angle neutron scattering
�SANS�, demonstrated that the melting line in LaSCO con-
tinues to the low temperature region as an inverse melting
line, similar to that observed in BSCCO and YBCO, and that
the SMP line lies entirely inside the Bragg glass region. Gen-
erally, the peak effect is caused by softening of the vortex
matter due to a phase transition. A question arises: what tran-
sition is signified by the SMP in LaSCO?

It has been known for a long time that in certain aniso-
tropic low Tc superconductors �borocarbides YNi2B2C,11

LuNi2B2C,12,13 Nb,14 and V3Si�15 the vortex solid phase un-
dergoes structural phase transformations �SPT�. In addition it
was recently firmly established that the high Tc supercon-
ductor YBCO has both square16 and rhombic17 phases, al-
though it is difficult to directly observe the transition line
using conventional techniques such as decoration, SANS or
�SR. In overdoped LaSCO, at low temperatures, the square
and rhombic lattices were observed using SANS by Gilardi
et al.18 Theoretically, it was shown that a structural phase
transition leads to a peak effect due to softening of certain
elastic modulus19 identified in the square-to-rhomb transition
as the “squash” modulus.20 It is natural therefore to conjec-
ture that the SMP line of LaSCO signifies a structural phase
transition. To test this conjecture we revisited the theory of
the rhomb-to-square transition in the presence of strong ther-
mal fluctuations in the London limit, and compared the re-
sults with experimental data measured in La2−xSrxCuO4
samples with different doping concentrations x.

The square-to-rhomb transition is by far the simplest pos-
sible structural phase transition. Since the z direction trans-
lation symmetry is not broken in the vortex lattice �and fluc-
tuations along this direction in anisotropic systems like
LaSCO are highly suppressed�, the transition is effectively
two dimensional. The broken symmetry is just Z4→Z2 �ro-
tations of 90° to rotations of 180°, the inversion symmetry

FIG. 1. The vortex matter phase diagram of a tetragonal high Tc

superconductor LaSCO.
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remains unbroken�, namely the same breaking pattern Z2
→1 as in the Ising model. In the less symmetric phase there
are two rhombic lattices differing by a 90° rotation �Figs.
2�a� and 2�b��, while in the more symmetric phase, i.e., the
square lattice �see Fig. 2�c��, the vector between two closest
vortices may be either parallel to the crystallographic axis a
of the atomic lattice, or rotated by 45° with respect to it.
Physically, the coupling between the crystal lattice and the
vortex lattice in a fourfold symmetric superconductor such as
LaSCO �we ignore the very small deviation from the tetrag-
onal symmetry� or certain low Tc material �such as borocar-
bide RNi2B2C ,R=Y ,Lu ,Er, V3Si� originates in two some-
what related anisotropies on a microscopic scale.21–23 The

first is the Fermi velocity dependence on the angle �: vF���
=vF�1+�1 cos�4���. It is believed that it introduces aniso-
tropy of the inter-vortex interactions largely at low momenta
�on the scale �, where � is the magnetic penetration depth in
the ab plane�, as was extensively studied by Kogan and
collaborators20 in the framework of the nonlocal London
theory. The second is the anisotropy of the gap function
������2= ��0�2�1−�2 cos�4��� �Ref. 23� resulting in the aniso-
tropy of the vortex-vortex interaction on the scale of the
coherence length �. This anisotropy is obviously present and
perhaps dominant in the d-wave superconductors due to the
nodes in the order parameter. It is this asymmetry which is
effectively taken into account in the Ginzburg-Landau ap-
proach to the rhomb-to-square structural phase
transition24,25,27 and it is taken into account within the non-
local London approach as an asymmetric moment cutoff.20

In this paper we are primarily interested in the part of the
phase diagram B�Hc2�T�, where the vortex core size � is
much smaller than the distance a between vortices. At first
glance, the structural phase transition in such a system, even
at finite temperature �below the melting temperature of
course�, is driven by interactions on scales smaller than cLa0,
where cL�0.1 is the Lindemann constant, and consequently
have nothing to do with anisotropy of the vortex core. How-
ever, it was claimed in a recent theory of thermal
fluctuations28 that the core anisotropy is crucial. Thus the
problem should be considered from a more fundamental ap-
proach. A standard approach to the crystal structure of point-
like �or line-like� objects at finite temperature requires a suf-
ficiently comprehensive account of the lattice
anharmonicity.29 The simplest version of such a theory takes
into account the interacting phonon excitations self consis-
tently �the self consistent harmonic approximation �SCHA��.
Such, and even more refined in certain respects, methods
were applied to the vortex physics in the context of the 2D
melting in Ref. 30. In the present study we show that the
SCHA is sufficient to describe the rhomb-to-square transition
line.

We parametrize the asymmetry on the scale � by a single
parameter and obtain a structural phase transition line with a
negative slope in the B-T plane, using the microscopic deri-
vation of the vortex-vortex interaction for a d-wave super-
conductor by Yang.33 In our theory, unlike the preceding
ones,28 no cutoff is required. The results of our theory com-
pare well with experimental data in LaSCO in a wide range
of doping.

The paper is organized as follows. The choice of the
model and the phase transition at zero temperature are dis-
cussed in Secs. II and III, respectively. The SCHA for square
lattice and fourfold symmetric potential and the variational
method are developed in Sec. IV. In Sec. V we compare
experiments on LaSCO with our theory. Discussion of the
general symmetry properties of the transition and compari-
son with other theories are the subjects of Sec. VI.

II. THE FOUR-FOLD SYMMETRIC POTENTIAL FOR A
d-WAVE SUPERCONDUCTOR

For a strongly type II superconductor ���� /�	1�, iso-
tropic in the ab plane, the potential of the interaction be-

FIG. 2. Two possible vortex lattice structures in a fourfold sym-
metric superconductor: �a� Square vortex lattice oriented along the
�110� crystallographic axis of atomic lattice: �b� and �c� Two rhom-
bic structures in the low temperature vortex phase: �b� is rotated by
90° with respect to �c�.
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tween straight line vortices at zero temperature is known to
be well approximated by Ref. 34:

V�rab� =

0

2

8�2�2 �K0�rab/�� − K0�rab/��� , �1�

where rab is the distance between the vortices. The repulsive
part of this potential is due to the long range magnetic inter-
actions, while the attractive part is due to the vortex cores
overlap. Note that despite the fact that both terms diverge for
rab→0, the potential remains finite. Initially, we neglect
variations of the penetration depth � and the coherence
length � due to thermal fluctuation on the microscopic scale
and therefore we limit ourselves to temperatures far from Tc.
�In Sec. IV C we extend the discussion to the region close to
Tc.� The potential V is therefore temperature independent.

The same formula applies to layered superconductors like
LaSCO which are strongly anisotropic with respect to direc-
tion c. Thermal fluctuation in a layers of width Lz should be
considered and the weak coupling between layers ignored.
The two dimensional Fourier transform of the potential given
in Eq. �1� reads:

v�q2� = Lz


0
2

4�
� 1

1 + bq2 −
1

�2 + bq2	 , �2�

where we use a�=

0 /B as a unit of length by writing q
→qa� /2�, and

b �
�2���2B


0
=

�B

Hc1
ln � �3�

is a dimensionless magnetic field. The potential decreases as
1/q4 in the ultraviolet. Commonly, the potential of Eq. �2� is
approximated by a simpler cutoff form 1/ �1+bq2�
�exp�−b / ��2�q2�.20,28,35

In a fourfold symmetric superconductor there are asym-
metries at various scales. The vortex-vortex interaction po-
tential at distances larger than the core size was derived from
a microscopic model of the d-wave superconductor by
Yang.33 Here we parametrize Yang’s potential w by the single
in-plane anisotropy parameter :

w�qx,qy� = �1 + � �h

1 + �g
	2�v�g� , �4�

where g=qx
2+qy

2, h=qx
2−qy

2. This potential, which does not
diverge for both large and small momenta, differs from the
one of the nonlocal linearized London model20,28

1

1 + bg + b2t1g2 + b2t2qx
2qy

2 exp�−
b

�2g	 , �5�

in that nonlinear corrections to Gor’kov equations are taken
into account. Expanding Eq. �5� to the first order in the small
parameter t2, one obtains a term similar to Eq. �4�, however
it is generally impossible to obtain the exponentially decreas-
ing cutoff from first principles. The potential’s dependence
on the single parameter  is obviously not the most general
one, but it allows us to qualitatively model the physics of the
structural phase transitions.

III. STRUCTURAL TRANSITION AT ZERO
TEMPERATURE

A. Lattice energy

At zero temperature the vortex lattice structure is deter-
mined by minimization of the lattice sum over the reciprocal
lattice of arbitrary symmetry:

E0 =
1

2 
nm

w�Gnm� , �6�

where Gnm are the reciprocal lattice vectors. We restrict our-
selves to rhombic lattices with the opening angle 2�. It turns
out �see also Ref. 23� that for a positive asymmetry param-
eter , the rhombic lattices oriented along the crystallo-
graphic axis �110� �see Fig. 2�b�� with

Gnm = nq1 + mq2; q1 =
1


2 tan �
�1,tan ��;

q2 =
1


2 tan �
�1,− tan ��

have energy lower than other lattice structures �rhombic ori-
ented along �100� or oblique�.

Calculating the E0��� sum for the rhombic lattices in the
whole range of angles ��=45° –60° �, one obtains that
above a certain critical asymmetry c�b� the square lattice
has lower energy than the rhombic, while below it one of the
rhombic structures either Fig. 2�b� or Fig. 2�c� is preferred.
The dependence of c on b is presented in Fig. 3. When
calculating the angle dependence of the lattice energy, it be-
comes clear that the transition is of a second order type with
mean field critical exponents. Similar results have been
found with a different fourfold symmetric potential in the
London limit20 and within the Ginzburg-Landau model.24,25

FIG. 3. Transition line at zero temperature separating the rhom-
bic vortex lattice phase from the square vortex lattice phase. The
dependence of critical four-fold anisotropy parameter c on b,
where b is the dimensional magnetic field b=4�2B�2 /
0.
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At finite temperature �well below the melting point� thermo-
dynamics is dominated by the long wavelength phonons.

B. Phonons and SPT

In this subsection we determine the spectrum of phonons
and its relation to the rhomb-to-square structural transforma-
tion. A macroscopic manifestation of the structural phase
transition is the softening of the elastic squash modulus

Csq = 2�C11 + C12� − C66 �7�

at the transition point.20 We consider a simplified model of a
vortex as an elastic line with an effective stiff segments of
the length Lz. The length is determined by comparison of the
tilt energy to the energy of the softest modes �the squash
modes�26 and is estimated in Sec. V.

The softening is reflected in the reduction of the sound
velocity of acoustic phonons along several directions. To see
this let us consider the energy E�ua� of displacements of
vortices ua from their equilibrium square lattice positions Ra

E�ua� =
1

2 
a�b

w�Ra− Rb+ ua− ub� . �8�

Since the symmetric phase is aligned along the �110� crys-
tallographic axis, it is natural to use the coordinate system
rotated in this direction. In this coordinate system the poten-
tial �4� has the form:

w�qx,qy� = �1 + �2bqxqy

1 + bg
	2�v�g� . �9�

The corresponding reciprocal lattice vectors are integers
G= �n ,m�. Expanding Eq. �8� to the second order in the
small displacement and switching to the Fourier harmonics
on the Brillouin zone of the square lattice qx, qy ��− 1

2 , 1
2
�,

ua=BZuq
� exp�iqRa�, one obtains E�uq��E0+E2�uq� where

E2�uq� =
1

2 
BZ

����q�uq
�u−q

� . �10�

Elastic moduli are given by the expansion of � to the second
order in q: ����q�=C����q�q�. The only nonzero moduli in
the fourfold symmetry case, namely, compression C11, shear
C66, and squash Csq moduli presented in Fig. 4. Note that Csq
vanishes for →c, while the rest are constant. The stability
conditions �positively definite quadratic form E2�uq�� for the
square lattice are 4�C11+C66��Csq�0 and C66�0. It is ex-
pected that increasing temperature will shift the structural
transition temperature towards lower fields. To incorporate
the temperature effects on the phase transition, the standard
phonon perturbation theory is not sufficient and certain re-
summations are required. The simplest one is the self-
consistent harmonic approximation.

IV. SELF CONSISTENT HARMONIC APPROXIMATION
FOR A FOURFOLD SYMMETRIC INTERACTIONS

A. General SCHA

Generally thermal excitations at temperature T are taken
into account by calculating the statistical sum

Z =� Due−H�uq�/T, Du = �
q�BZ

d2uq. �11�

To develop a SCHA one has to take into account the inter-
actions between phonons �anharmonicities� to the third and
fourth orders in uq

�. The third order however will drop out
later on �see Ref. 30 for details, although we use a more
general Ansatz for the variational correlator� and we just
write the quartic term in the expansion:

H�uq� = E0 + E2�uq� + E4�uq� ,

E4�uq� =
1

4! 
k,l,m�BZ

������q,l,m�uq
�ul

�um
� u−q−l−m

� . �12�

In the SCHA scheme, belonging to the broad class of
“Gaussian” approximations, one adds and subtracts a qua-
dratic form with variational correlator T����q�.36 Then the
variational part ���

−1 �k�uq
�u−q

� /2 is considered the “large” �or
Gaussian� part, while the rest of Hamiltonian is a small per-
turbation. Therefore it is multiplied by an artificial small pa-
rameter �:

Z =� Du exp���−
H

T
+

���
−1 �k�uq

�u−q
�

2T
	�

�exp�−
���

−1 �k�uq
�u−q

�

2T
	 . �13�

One subsequently expands to first order in � taking �→1
after performing Gaussian integrations over uq

�. The Gauss-
ian effective free energy Z=exp�−fef f� reads:

fef f =
E0

T
+ f1 + f2 + f4, �14�

FIG. 4. The compression, shear and squash elastic moduli in the
square lattice phase as function on the fourfold anisotropy param-
eter  at zero temperature.
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f1 = − 1
2 Tr

q
ln�2T�����q�� , �15�

f2 =
1

2 
q

����q�����q� , �16�

f4 =
3T

4! 
q,l

������q,− q,l,− l�����q�����l� . �17�

This should be minimized with respect to the variational
function ����q�. Explicit evaluation of the coefficient func-
tions ����q� and ������q ,−q , l ,−l� results in �up to unim-
portant terms independent of ����:

f2 = 
q �w�q − G���q − G�x�q − G�x�xx�q� + �q − G�y�q − G�y�yy�q�

+ 2�q − G�x�q − G�y�xy�q� �
− w�G���G�x�G�x�xx�q� + �G�y�G�y�yy�q� + 2�G�x�G�y�xy�q��

� �18�

and

f4 =
T

2 
q1


q2

�A + B − 2C� , �19�

where

A = w�G��GxGx�xx�q1� + GyGy�yy�q1� + 2GxGy�xy�q1��

�GxGx�xx�q2� + GyGy�yy�q2� + 2GxGy�xy�q2��

B = w�q1 + q2 + G�� �q1 + q2 + G�x�q1 + q2 + G�x�xx�q1�
+ �q1 + q2 + G�y�q1 + q2 + G�y�yy�q1�
+ 2�q1 + q2 + G�x�q1 + q2 + G�y�xy�q1�

�
� �q1 + q2 + G�x�q1 + q2 + G�x�xx�q2�+

�q1 + q2 + G�y�q1 + q2 + G�y�yy�q2� + 2�q1 + q2 + G�x�q1 + q2 + G�y�xy�q2� � ,

C = w�q1 + G�� �q1 + G�x�q1 + G�x�xx�q1�
+ �q1 + G�y�q1 + G�y�yy�q1� + 2�q1 + G�x�q1 + G�y�xy�q1� �

��q1 + G�x�q1 + G�x�xx�q2� + �q1 + G�y�q1 + G�y�yy�q2�
+ 2�q1 + G�x�q1 + G�y�xy�q2� � . �20�

It will be sufficient for our purposes to consider a much
simpler Ansatz when instead of three functions of two vari-
ables �xx�q� ,�xx�q� ,�xx�q� we will minimize just over three
variables representing elastic moduli of the lattice. We de-
scribe the Ansatz in the next subsection.

B. The linear dispersion approximation

It is well established that near the second order square to
rhomb SPT the relevant degrees of freedom are the long
wavelength ones. Therefore one can expand the self-
consistent dispersion function �in rotated coordinate system�
in small momenta


�� = �����−1 = c����q�q� �21�

or in components


xx = c11qx
2 + c66qy

2; 
xy = cqxqy ; 
yy = c11qy
2 + c66qx

2

c = c11 −
csq

2
+ c66 �22�

where csq is defined as in Eq. �7�. It was was checked a
posteriori that this approximation is extremely accurate
everywhere in the Brillouin zone for parameters of interest.
The relation between these variational parameters and elastic
moduli in the crystallographic axes coordinate system is

c11 = C11 + C66 − Csq/4,

c66 = Csq/4, csq = 4C66. �23�

We therefore parametrize ��� by these three moduli.
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It is crucially important to have the correct infrared as-
ymptotics of the correlators. Note that this Ansatz is very
different from the usual simplification made within SCHA.30

The later in the configuration space reads:

��ua
� − ub

���ua
� − ub

��� � ����ua
2� . �24�

In momentum space it translates into


q

����q�cos�qRab� � 
q

����q� , �25�

which is doubtful when a soft mode appears. In order to
discuss the second order phase transition, soft modes are
essential.

C. Minimization of the variational free energy

In order to find the structural phase transition line one
tries to find the minimum of the variational free energy Eq.
�14� for the square lattice with respect to the variational pa-
rameters c11, c66, and csq in the range of stability discussed in
Sec. II. Values of external parameters B ,T, etc. for which the
stability conditions are not obeyed, namely Csq�0, the tran-
sition to the rhombic phase takes place. Now we return to the
evaluation of the integrals over q of the variational free en-
ergy Eq. �14� as a function of the variables c11, c66, and csq.
The first term has the form

f1 = 1
2 �ln�c11

2 c66� + e1�r�� , �26�

where

e1�r� = �
−1/2

1/2

dqxdqy ln�det 


c11
2 	 = ln� r + 2

16
	 − 6 + �r−

+ r+ tan−1� 2r−

r+ − 1
	 + r− tan−1� 2r+

r− − 1
	 �27�

and the dimensionless ratios of moduli are defined by:

r =
c11

2 + c66
2 − c2

c11c66
, r± =
 r

2
±
r2

4
− 1. �28�

The second contribution is

f2 =
1

2c11
e2�csq/c11,c66/c11� �29�

e2�csq/c11,c66/c11� = v1b1 + v2b2 + v3b3, �30�

where the integrals appearing in Eq. �18� and �20�

b1 = �
−1/2

1/2

dqxdqy

c11qx
2�c11qx

2 + c66qy
2�

det 


=
c11

2c66
+ �1 −

rc11

2c66
	I�r� ,

b2 = �
−1/2

1/2

dqxdqy

c11qy
2�c11qx

2 + c66qy
2�

det 

=

1

2
+ � c11

c66
−

r

2
	I�r� ,

b3 = �
−1/2

1/2

dqxdqy

c11cqx
2qy

2

det 

=

c

c66
I�r� , �31�

are expressed via a function of r

I�r� =
c11c66

c
�

−1/2

1/2

dqxdqy

qx
2qy

2

det 


= �r+ tan−1� 1

r+
	 − r− tan−1� 1

r−
	��r2 − 4�−1/2. �32�

The coefficients vi depend on the potential and are given in
the Appendix. The last contribution to the free energy reads:

f4 =
�

2c11
2 e4�csq/c11,c66/c11� �33�

e4�csq/c11,c66/c11� = v11b1
2 + v22b2

2 + v33b3
2 + 2v12b1b2

+ 2v13b1b3 + 2v23b2b3, �34�

where the dimensionless temperature

� =
4�T

Lz
0B
�35�

was introduced.
The free energy Eq. �14� can now be minimized explicitly

with respect to c11:

c11 = 1
4 �e2 + 
e2

2 + 16�e4� , �36�

leaving us with numerical minimization with respect to the
two remaining parameters: ratios of elastic moduli. As an
example of this procedure we present in Fig. 5�a� the free
energy for =0.03, �b=0.2�10−4, b=20 as a function of
Csq /C11 and C66/C11. The minimum appears at Csq /C11
=10−5, C66/C11=0.3. The small value of the squash modulus
implies that this point is very close to the loss of the square
lattice stability line. In Fig. 5�b� we slightly lowered the
temperature and as a result the minimum disappeared. One
clearly observes that the squash modulus vanishes at the
point where the square lattice becomes unstable. Figure 6�a�
presents the squash modulus Csq �in the original coordinate
system, namely tied to crystallographic axes� as a function of
the fourfold asymmetry parameter , at temperatures T=0,
Tc /6, and Tc /3 �magnetic field is b=10 and �=35�. The
temperature dependence of Csq for =0.03 and two different
magnetic fields are shown in Fig. 6�b� �curve 1 corresponds
to b=10, and curve 2 to b=20�. It can be fitted precisely in
the whole region shown in the figure by the power law:

Csq = const�T − TST�� �37�

where TST is the temperature of the square-to-rhomb transi-
tion and the critical exponent �= 3

2 . A typical vortex lattice
phase diagram in the b-t plane is presented in Fig. 7 for �
=75, and =0.003,0.0165,0.03,0.05. The transition line is
fitted accurately by the following function

b = g��� =
A0�,��

�� ��0�,�� − ��;
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� = b� � �t; � = 4�3�2Tc/Lz
0
2, �38�

where t=T /Tc. Above the temperature at which �=�0 the
vortex lattice is square for all magnetic fields. At low tem-
peratures the dependence is a power function. In the case
presented in Fig. 7 in which �=75 �appropriate to LaSCO�
the exponent is �=0.9 independent of the fourfold anisotropy
parameter .

Application of the above theoretical results to experi-
ments in La2−xSrxCuO4 sample are discussed next.

V. EXPERIMENTAL ESTIMATE OF THE FOURFOLD
ANISOTROPY PARAMETER IN LaSCO

In this section we derive the fourfold anisotropy param-
eter, , for La2−xSrxCuO4 with different doping concentration
x. The choice of this material was motivated by the following
considerations. Since we are interested in a superconductor

FIG. 6. �a� The soft modulus Csq as function of the fourfold
anisotropy for three different temperatures T=0, Tc /6, and Tc /3.
Magnetic field is b=10 and �=35. �b� and �c� The soft modulus
Csq /C11 as function of reduced temperature T /Tc for =0.03 and
two magnetic fields b=10 �curve 2� and b=20 �curve 1� where �
=35.

FIG. 7. Location of the square-to-rhomb structural transition on
the B-T plane. The magnetic field b=4�2B�2 /
0 is while the tem-
perature �=�T /Tc, with material parameter �=16�3�2Tc /Lz
0

2.
The transition lines obtained numerically for �=75 and 
=0.003,0.0165,0.03,0.05 �circles� �from up to down� is fitted by
the function �solid lines� b=A0 /����0−�� where �=0.9 and does
not depend on the fourfold anisotropy parameter .

FIG. 5. �a� Free energy as function of variational parameters
C66/C11 and Csq /C11 just above the rhomb-to-square transition line
�=0.03, �=4�T / �Lz
0B�, �=4�10−5, b=20�. Minimum clearly
exists although the “soft” modulus, the squash is very small. �b�
Free energy at the transition �=0.03, �=4�10−5, b=15�. The
minimum of energy disappears, while the squash modulus vanishes.
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with strong thermal fluctuations, a natural choice is a high Tc
material. In addition, it should be fourfold symmetric. The
natural choice would be BSCCO which is tetragonal. How-
ever the OD line in BSCCO is located too low in the B-T
phase diagram �below 500 G�. Since YBCO has a large in-
plane anisotropy, this leaves us with the nearly tetragonal
LaSCO crystals. Three La2−xSrxCuO4 single crystals, with
different amount of Sr, were grown31 by the traveling-
solvent–floating-zone method: underdoped �with doping con-
centration x=0.126, Tc=32 K, ��2�10−5�, optimally
doped �x=0.154, Tc=37 K, ��10−5� and overdoped �x
=0.194, Tc=30 K, ��10−5�.9 Samples of these crystals,
were cut into parallelepiped shape with dimensions �c�a
�b�1.05�1.7�2.3 mm, 1.08�0.7�1.17 mm, 2.08�0.83
�0.96 mm, respectively. Measurements were performed us-
ing a commercial superconducting quantum interference de-
vice �SQUID� magnetometer �Quantum Design MPMS-XL�
utilizing the RSO technique with 1 cm scans. Magnetization
was measured at constant temperature as a function of the
external field applied parallel to c axis and being swept up to
5 T and down to zero in steps of 200 Oe.

The critical current is estimated from the width of the
magnetization loop.32 Examples of the second peak in the
critical current as a function of magnetic field are presented
in Fig. 8 �stars correspond to the underdoped sample at T
=14 K, circles to the optimally doped sample at T=12 K,
while triangles to the overdoped sample at T=16 K�. The
lines describing the SMP for the underdoped sample �line 1
on Fig. 9� and the overdoped sample �line 2 on Fig. 9� in the
B-T plane exhibit negative slopes.

It was predicted that the critical current Jc for elastic vor-
tex matter in a fourfold symmetric superconductor is propor-
tional to �C66Csq�−1.19 It should, therefore, diverge at the
transition line in an infinite sample due to vanishing of the
squash modulus Csq. The phenomenon is similar to the regu-
lar peak effect appearing due to softening of the shear modu-
lus. Finite size and other inhomogeneity effects smooth out
the divergence. We fit this dependence phenomenologically

to the data of Jc presented in Fig. 8, using the dependence of
the squash modulus near criticality in the form

Jc�B� � Mup − Mdown =
a

��B − BST�2 + ��B�2��/2 , �39�

where �B is the width of the peak. The fits �solid lines in
Fig. 8� yield the following values of the phenomenological
parameters a and �B for the three samples. For the under-
doped sample �stars� at T=14 K, a=7.26�104 G5/2, �B
=0.35 T; for the optimally doped sample �circles� at T
=12 K, a=4.64�104 G5/2, �B=0.45 T, while for the over-
doped sample �triangles� at T=16 K, a=1.08�104 G5/2,
�B=0.21 T.

Figure 9 shows the experimental phase transition lines
BST�T� measured in the three LaSCO samples, underdoped
�squares�, optimally doped �stars� and the overdoped sample
�rhombs�. These lines exhibit a slightly concave shape with
negative slope and approach BST�T0�=0 at a certain tempera-
ture T0. While T0 is very close to Tc for the optimally doped
and overdoped samples, it is significantly lower than Tc for
the underdoped sample �see also Ref. 10�. In order to com-
pare these data with our theory we have to extend the theory
to the whole temperature range up to Tc. We took into ac-
count thermal fluctuations on the microscopic scale phenom-
enologically by using the two-fluid model for the tempera-
ture dependence of the coherence length, and the penetration
depth �−2�t�=�0

−2�1− t4�, �−2�t�=�0
−2�1− t4�, where t=T /Tc.

The transition line was described in the Sec. IV by a function
b=g�b�� presented in Fig. 7 and fitted in Eq. �38� by a power
function. Here the dimensionless parameters b and � were
defined in Eq. �35� and Eq. �3� respectively. Both should be
rescaled:

FIG. 8. Critical current as function of magnetic field. Stars cor-
respond to the underdoped sample at T=14 K, circles to the opti-
mally doped sample at T=12 K, while triangles to the overdoped
sample at T=16 K. Lines are fits by a function Jc.

FIG. 9. Comparison of the experimental second magnetization
peak line of La2−xSrxCO4 with the theoretical square-to-rhomb tran-
sition line. The squares, stars, and rhombs represent the under-
doped, optimally doped and overdoped samples respectively. The
theoretical curves �solid lines� are all for �=75 indicate the location
of the second magnetization peak for the underdoped sample �dia-
monds� �=0.03, �=4�10−4, s1=272, s2=139�, for optimally
doped sample �triangles� �=0.02, �=4�10−4, s1=200, s2=123�
and for overdoped sample �squares� �=0.01, �=3.2�10−4, s1

=469, s2=165�.
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b�t� = �1 − t4�s� �t

1 − t4	 � �s1
�1 − t4��+1

t� − s2
�1 − t4��

t�−1 	 .

�40�

Fitting parameters are therefore the fourfold anisotropy
parameter  and a material parameter �=16�3�0

2Tc /Lz
0
2.

Using the measured values of the penetration length �0, co-
herence length �0 and the critical temperature Tc the fits yield
=0.03, �=10−4 for underdoped, =0.02, �=10−4 for the
optimally doped and =0.01, �=8�10−5 for the overdoped
sample. The lengths of the stiff segments Lz is therefore of
the order of 10−4 cm which in turn implies that the tilt energy
C44/Lz

2�Csq /a0
2. The results of this fitting procedure are

shown as solid lines in Fig. 9 and demonstrate a very good
agreement with the experimental data. Therefore, we thus
conclude that the transition line location on the B-T plane
allows to determine the fourfold anisotropy parameter .
Note that  can also be determined independently from
transport measurements. In particular, the flux flow resistiv-
ity, which is isotropic in the square vortex lattice phase, ex-
hibits anisotropy in the rhombic phase. In the linear response
Ji=�ijEj, the fourfold symmetry implies that �ij =�ij� and
therefore is rotationally invariant, while in the rhombic phase
the remaining twofold symmetry is less restrictive: �ij
=�ij�+�ij

z , �11
z =−�22

z =1, �12
z =�21

z =0. The flux flow resis-
tivity has been measured recently in YBCO single crystals.37

However, even in the square lattice phase the anisotropy may
show up beyond the linear response. Indeed the fourth rank
nonlinear conductivity tensor �Ji=��ijklEjEkEl already has a
room for the second coefficient proportional to , see Ref.
24.

VI. DISCUSSION AND CONCLUSIONS

We first address the relation of the theory presented in this
paper to other theories of the square-to-rhomb structural
phase transition. The distinct general feature of our result is
that the slope of the transition line is negative. There are
three major approaches to the transition: the more basic is
the microscopic approach starting with the BCS type theory
�see Refs. 22 and 23�, the second more phenomenological
approach is based on the London approximation in which
vortices appear as line-like objects �Kogan and
collaborators20,28 and the present theory belongs to this type�,
while the third, also a phenomenological approach, is based
on the Ginzburg-Landau expansion near Tc �see Refs. 24, 25,
and 27�. The main result of the symmetry breaking, namely
the slope of the SPT line, is in fact independent of the details
of the theoretical approach. It rather reflects a more general
property of the system: its symmetry. We start therefore the
discussion with symmetry and entropy considerations.

In low Tc superconductors the slope of the
rhomb-square12 can be positive. This corresponds to a situa-
tion in which for a fixed magnetic field at low temperature
the symmetric phase is stable, while upon heating two de-
generate asymmetric ground states appear. Assuming that
disorder can be neglected, this situation is unphysical. Quite
generally, in statistical physics a symmetry breaking second
order phase transition proceeds the other way around: from a

degenerate asymmetric �symmetry H lower that of Hamil-
tonian G� vacuum to a symmetric one whose symmetry co-
incides with that of the Hamiltonian.38 For example, upon
increasing temperature ferromagnet becomes paramagnet,
superconductor-normal metal, solid-liquid, etc. Although, to
our knowledge, a rigorous proof does not exist, the reason
for this is that upon heating excitations “across the energy
barrier” separating the multiple symmetry broken ground
states are generated and eventually the Gibbs state becomes
symmetric and degeneracy disappears �the system regains
ergodicity�.

In vortex physics outside the domain of SPT this general
rule holds. For example in very clean materials the melting
line has a negative slope. Note that the phenomenon of in-
verse melting was observed in BSCCO �Ref. 1� and YBCO
�Ref. 3� was shown to be caused solely by disorder for which
the previous entropy argument does not apply.

In light of this, it is quite surprising to find out that many
theoretical papers �which generally do not consider disorder�
arrive at a conclusion that the square lattice upon heating
becomes a less symmetric rhombic lattice. Therefore, in or-
der to explain the positive slope of numerous structural phase
transitions observed in low Tc materials �Refs. 12–14� one
should explore other ideas. As noted above, disorder can
provide such an explanation. In the presence of disorder the
slope becomes positive as has been demonstrated in the case
of the OD line.

To conclude, the unique temperature dependence of the
phase transition line in LaSCO derived from the onset of the
second magnetization peak, interpreted in the past as an
order-disorder or decoupling transitions, was demonstrated
to be consistent with being a structural phase transition in the
vortex lattice.
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APPENDIX

Coefficients of the quadratic Eq. �30� and quartic, Eq. �34�
to the Gaussian free energy for any fourfold symmetric po-
tential w�qx ,qy� are

v1 = 
G

Gy
2wxx� ; v2 = 

G
�2w + 4Gxwx� + Gx

2wxx� � ,
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v3 = − 
G

�2w + 4Gxwx� + GxGywxy� � , �41�

v11 = 
G

�2w + 8Gxwx� + 2Gx
2wxx� + 8GxGywxy� + 4Gx

2Gywxxy�

+ 1
2Gy

4wxxxx�� + 1
2Gx

2Gy
2wxxyy�� � ,

v22 = 
G

�14w + 56Gxwx� + 38Gx
2wxx� + 8GxGywxy� + 4Gx

2Gywxxy��

+ 8Gx
3wxxx� + 1

2Gx
4wxxxx�� + 1

2Gx
2Gy

2wxxyy�� � ,

v33 = 
G

�16w + 64Gxwx� + 16Gx
2wxx� + 64GxGywxy�

+ 32Gx
2Gywxxy� + 4Gx

2Gy
2wxxyy

e� � ,

v21 = 
G

�12Gy
2wxx� + 4GxGy

2wxxx� + 4Gy
3wxxy� + 1

2Gx
4wxxyy��

+ 1
2Gx

2Gy
2wxxxx�� � ,

v23 = − 
G

�12w + 48Gxwx� + 18Gx
2wxx� + 36GxGywxy�

+ 2Gx
3wxxx� + 2Gy

3wxxx� + 18Gx
2Gywxxy� + 2Gx

3Gywxxxy�� � ,

v13 = − 
G

�18Gy
2wxx� + 6GxGy

2wxxx� + 6Gx
2Gywxxy�

+ 2GxGy
3wxxxy�� � , �42�

respectively.
The sum is over reciprocal square lattice G �Fig. 1�, while

derivatives are performed with respect to qx ,qy at the recip-
rocal lattice points.
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