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Local Magnetic Relaxation in High-Temperature Superconductors
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A novel Hall probe array technique is used to measure the spatial distribution and time dependence
of the magnetic induction in YBa2Cu3O72d crystals. Analysis of the data based on the flux diffusion
equation allows a direct, model-independent determination of thelocal activation energyU and the
logarithmic time scalet0 for flux creep. The results indicate that the spatial variations ofU are small
(6kT) and thatU increases logarithmically with time. The timet0 is inversely proportional to the field
and it exhibits a nonmonotonic temperature dependence. These results confirm theoretical predictions
based on the logarithmic solution of the flux diffusion equation.
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Thermally activated flux creep in high-temperatur
superconductors is a subject of intensive study. Th
phenomenon is commonly investigated by measuring t
time dependence of the magnetic momentM averaged
over the sample volume. Among the most significa
parameters extracted from such data are the effect
activation energyU and the logarithmic time scalet0 for
flux creep [1]. Recent models emphasize the nonline
dependence ofU on the current densityj [2,3] and the
macroscopic nature of the time scalet0 [1–6]. While it is
not possible to deriveUsjd directly from the experimental
data, each of the above models gives a specific relaxat
behavior that can be compared with experimental resu
Such an approach for evaluatingUsjd is model dependent
and involves fitting several parameters [7].

Maley et al. [8] proposed a method to determineUsjd
avoiding the a priori assumption of a model for the
dependence ofU on the current density and field. Their
method analyzes global magnetic relaxation data, utilizin
an integrated form of the flux diffusion equation ove
the sample volume. It is important to realize that th
activation energy determined by this method is actual
the activation energyat the surfaceof the sample, while
the current densityj is averaged over the sample volum
[9]. Although in the limit UykT ¿ 1 the activation
energy should be almost constant over the sample volu
[1,4], in the presence of surface barriers [10–12] th
values of U at the surface and in the bulk may be
different.

In this work we propose a method to determine th
local U andj in the bulk, utilizing the recent development
of a miniature Hall probe array [12] to measure th
local inductionB at different locationssimultaneouslyas
a function of time. In contrast with the conventiona
techniques where only the time evolution of the tota
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magnetization is recorded, we measure the time evoluti
of the spatial distribution ofB, and thus are able to
determine both thetime and thespatial derivativesof
B. This new information enables direct analysis of th
local relaxation data using the basic diffusion equatio
governing the flux motion [4,13]:

≠B
≠t

­ 2= ? D , (1)

where D ­ Bv is the flux current density andy ­
y0 exps2UykT d is the effective vortex velocity. The
preexponential factory0 ­ Ajf0ych, wheref0 is the
unit flux, c is the light velocity,j is the current density,
h is the viscosity coefficient, andA is a numerical factor
[4]. In the slab geometry, where all the quantities depe
on a single coordinatex, j ­ 2scy4pd≠By≠x and

≠B
≠t

­ 2
≠D
≠x

; D ­
Af0

4ph
B

≠B
≠x

e2UykT . (2)

The basic idea of our approach is to use the Hall pro
array for simultaneous measurements ofB, ≠By≠x and
≠By≠t, that appear in Eq. (2). As described below, th
allows measurements ofU directly without assuming any
specific model regarding the flux creep mechanism.

Measurements were performed on two single crystals
YBa2Cu3O7 [14,15] having a transition temperatureTc .
91 K and a transition width of less than0.5 K as deduced
from dc measurements at1 Oe. The crystals were cut into
rectangular shape of sizes0.45 3 0.23 3 0.1 mm3 and
1.2 3 0.5 3 0.2 mm3 (samples Y1 and Y2, respectively).
The Hall probes were made of GaAsyAlGaAs 2DEG. An
array of11 elements, with10 3 10 mm2 active area and
sensitivity better than0.1 G, was in direct contact with the
surface of the crystal, as sketched in the inset of Fig.
The crystal and the probes were placed on a temperatu
controlled sample holder inside a coil providing a dc fiel
© 1995 The American Physical Society
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FIG. 1. Local inductionBz vs Hall probe location measured
in crystal Y1 atT ­ 50 K, 8 s and 1 h after removal of the
external field. The solid lines, which are a result of mode
calculations, serve here only as a guide for the eye. Ins
Configuration of Hall probe array related to the crystal.

parallel to thec axis of the crystal. The probes detect th
componentBz of the field normal to the surface of the
crystal.

The experiment was carried out as follows. After zero
field cooling the sample from aboveTc, we measured
the profile Bzsxd for various applied fieldsHa, on the
ascending and descending branches ofBzsHd. This
enabled visual verification of the establishment of
“critical state” which is essential for the flux creep
experiments. Once a critical state was established,
field profile was measured every13 s for a period of 1 h.

Figure 1 displays a typical field profileBzsxd across
the sample widthd ­ 230 mm measured in a remanent
state at50 K, for crystal Y1. The solid line in the
figure, which serves only as a guide for the eye, wa
calculated by using a Kim-like model for a platelet samp
in a perpendicular field. The profiles of Fig. 1 show
signatures of demagnetization effects typical for suc
samples [16–18], e.g., a sign reversal ofBz near the edge,
approximately at the location of probe 3 atx0 ø 0.1d. In
such samples, the relationj ­ 2scy4pd≠Bzy≠x used in
Eq. (2) should be replaced byj ­ 2scy4pd s≠Bzy≠x 2

≠Bxy≠zd. However, numerical simulations show that in
our samples, for which the ratiosthicknessdyswidthd ø
0.5, j can be approximated byfsxd scy4pd s≠Bzy≠xd,
where the correction factorfsxd ø 0.8 throughout most
of the sample, except for regions near the center a
the edges. Taking this correction into account in th
evaluation ofj had only a small effect (, 10%) on the
results.

Figure 2 showsBz as a function of time at different
locations in the sample. Evidently, the relaxation ra
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FIG. 2. Bz vs time measured at different locations in and ou
of the crystal.

≠Bzy≠slntd is maximum near the center and decreas
toward the edge. Probe 3, located near the pointx0 ø
0.1 d whereBz ø 0, shows approximately zero relaxation
rate. The pointx0 corresponds to a contour where vortice
of different sign annihilate. As a direct consequence
the sign reversal ofBz near the edge, the induction a
the sample edgeincreaseswith time, exhibiting apositive
relaxation rate. This result emphasizes the nonuniform
of the local relaxation, thus questioning the meanin
of global measurements in which negative and positiv
contributions are combined.

Using the rawBzsx, td data, we calculate the local re-
laxation rates≠Bzsx, tdy≠t, and then numerically integrate
≠Bzsx, tdy≠t in order to determine the flux current density
Dsx, td according to Eq. (2):

Dsx, td ­ 2
Z x

dy2

≠Bzsx, td
≠t

dx . (3)

In Eq. (3) x ­ dy2 is the center of the sample where
D ; 0. Knowing Dsx, td, we obtain thelocal activation
energyUsx, td, using Eq. (2):

Usx, td
kT

­ 2 ln

√
4phD

Af0Bzs≠Bzy≠xd

!
. (4)

We take the flux viscosity coefficienthsTd from Ref. [19]
and assumeA ­ 1, as will be justified below. Typical
results ofUykT at 40 K are shown in Fig. 3 as a function
of time. The figure shows a linear dependence ofUykT
on lnstd with a slope of1 in the long-time limit. This is
in accordance with the general solution of the diffusio
equation (2) with logarithmic accuracy [20,21]:

U ­ kT lnstyt0d (5)

with [1,4]

t0 ­
p

2
kThd2

Af0j≠Uy≠jjjBzs0d
, (6)
2405
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FIG. 3. Local activation energyUykT vs time for different
probes atT ­ 40 K. For all the probes Eq. (5) holds perfectly.
U is almost constant throughout the sample as shown in t
inset.

whereBzs0d is the magnetic induction at the sample edg
The inset of Fig. 3 demonstrates thatU is almost constant
(within 6kT ) throughout the sample. This is consisten
with the predictions of models based on the concept
self-organized criticality [1,4].

In Fig. 4 the activation energyUykT , calculated as an
average between probes 5 and 6, is plotted as a function
j. This location is approximately in the middle betwee
the sample edge and the center, where the differen
betweenj and scy4pd≠Bzy≠x is negligible. Evidently,
the isothermal segments in Fig. 4 do not describe
continuous curve, reflecting a strong dependence ofU on
temperature. The best fit for each isotherm was obtain
using the expression [3]

U ­ Uc lnsjcyjd . (7)

FIG. 4. Activation energyU vs j at different temperatures.
The lines correspond to the fit: U ­ Uc lnsjcyjd. The
dependence ofUc andjc on temperature is shown in the inset.
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Plots of UcsT d and jcsT d obtained from these fits are
shown in the inset of Fig. 4. In the collective, as we
as in the single vortex pinning regimes, one expects
Uc ø const forT , Tdp , whereTdp is the depinning tem-
perature. From Fig. 4 we estimateTdp . 55 K. Above
Tdp the data of Fig. 4 exhibit an almost linear increase
Uc with T . This is typical for the single vortex pinning
whereas for collective pinningUc grows with temperature
more rapidly [1].

We turn now to discuss the behavior of the logarithm
time scalet0. As noted by Feigel’manet al. [2,4], t0 is
a macroscopic quantity depending on the sample sized
[see Eq. (6)]; it is, however, related to the microscop
attempt frequencyv and the hopping distancel through
the velocity y0 ­ Ajf0ych ~ vl. From Eq. (5) one
can findt0 by extrapolating the data of Fig. 3 toU ­ 0.
The circles in Fig. 5 show the temperature dependen
of t0 for crystal Y1 for the case of remanent relaxatio
At low temperatures (T , Tdp) t0 increases withT then
exhibits a broad maximum between60 and 75 K and
finally drops asT approachesTc. This behavior can be
compared with the prediction of Eq. (6) by substitutin
Ucyj for j≠Uy≠jj [see Eq. (7)], andBzs0d . s4pycdjcx0.
All the parameters in Eq. (6) are now experimental
known. The squares in Fig. 5 are results of calculati
of t0, using Eq. (6) and takingA ø 1.4 to obtain the
best fit to the directly measured values oft0. Evidently,
the calculated and measured values oft0 exhibit similar
behavior. It is worth noting that the resultA ø 1.4
justifies the neglect of lnA in Eq. (4) forUykT . 15.

We also tested the validity of Eq. (6) for the depen
dence oft0 on Ha and on the size of the sample. For th
purpose we measuredBzsx, td in the larger sample (Y2)
in the presence of a field and in the remanent state. T
results shown in the inset of Fig. 5, for78 K, were also

FIG. 5. Measured (circles) and calculated (squares) values
the logarithmic time scalet0 vs temperature for sample Y1
The dashed line is a guide for the eye for the calculated poin
Inset: Field dependence oft0 for sample Y2. The solid line is
proportional to1yHa.
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obtained directly by extrapolating theU vs lnstd data to
U ­ 0. These results demonstrate thatt0 decreases in-
versely with the field in accordance with the theoretica
prediction [see Eq. (6)] described by the solid line in th
figure. The value oft0 deduced from the remanent relaxa
tion in the large sample Y2 (not shown in the figure) i
1024 s, larger by a factor of. 3.5 than the value ob-
tained in Y1 at the same temperature, in good agreem
with the prediction of the size dependence in Eq. (6).

In conclusion, we have demonstrated a new techniq
for determining the activation energyU and the logarith-
mic time scalet0. The method employs an array of Hal
probes to measure the time evolution of the field profi
in the sample, thus enabling direct analysis of the flu
creep on the basis of the flux diffusion equation. Th
unique method allows determination of thelocal activa-
tion energyUsx, td without engaging any specific mode
concerning theUsj, Bd dependence. Using this technique
we obtained, for the first time, the logarithmic time scal
t0 as a function of temperature, field, and sample siz
The results confirm theoretical predictions based on t
general solution of the flux diffusion equation with a log
arithmic accuracy.
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