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Crystallization of the ordered vortex phase in high-temperature superconductors
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The Landau-Khalatnikov time-dependent equation is applied to describe the crystallization process of the
ordered vortex lattice in high-temperature superconductors after a sudden application of a magnetic field.
Dynamic coexistence of a stable ordered phase and an unstable disordered phase, with a sharp interface
between them, is demonstrated. The transformation to the equilibrium ordered state proceeds by movement of
this interface from the sample center toward its edge. The theoretical analysis dictates specific conditions for
the creation of a propagating interface and provides the time scale for this process.
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The process of formation of various equilibrium phasesbeing the value of the Fourier component of thetexden-
after a sudden change in the thermodynamic conditions is sity at the minimal vector of the reciprocal lattice. In order to
topic of wide theoreticdland experimentalinterest. Obvi-  describe the kinetics of the phase transition we allow the
ously, the initial state created immediately after the abrupbrder parameter to be temporally and spatially dependent
change is a nonequilibrium, unstable state. The transforma¥ (r,t)=p¢ (r,t), assuming thatV(r) varies slowly over

tion of this state to the thermodynamic equilibrium state maythe intervortex distance. The scalar real order parameter
proceed either homogeneously throughout the entire systemp(y t) so defined, distinguishes between two thermody-
or by nucleation of a spatially localized domain of the equi-namic solid phases of the vortex mattdt=0 for the disor-
librium phase, creating a front that propagates until equilibgered state an =W, 0 for the ordered state.

rium is reached in the entire system. The latter process has | the Ginzburg-Landau formalism, the phase transition
been recently observed in the vortex system Ofpetween the ordered and disordered phases may be described

Bi,Sr,CaCyOg. ; (BSCCO crystals™ This vortex system  py 4 free-energy density functionsl
exhibits a transition between ordered and disordered phases

at a temperature-independent transition figlg=400 G>° 1 1 1

High temporal resolution magnetooptical measureniénts F= ED(V\I’)Z— Ea‘I’Z— §,8‘I'3+ 2 Y4, 2
indicated that immediately after a sudden application of ex-

ternal magnetic fiel®,=<B,q, a transient disordered vortex where a, B, y, andD are the Landau coefficients. These
state is created, followed by a nucleation and front propagacoefficients depend on the vortex-vortex and vortex-pinning
tion of an ordered vortex stafeThe purpose of this paper is interactions, and their evaluation requires a microscopic
to analyze theoretically the crystallization process of the vortheory that does not yet exist. Note that Eg) does not
tex ordered phase, i.e., the nucleation process and the crgescribe the whole free energy of the vortex system, but only

ation of a front and its motion. _ that part that is varying through the phase transition, te.,
Our analysis is based on the Landau-Khalatnikbi\)  dependent.
time-dependent equation As the order-disorder vortex phase transition in BSCCO is
field driven, we express the parameters a function o,
ow SF O
v a=ay(1—B/B*), ©)

whereW andF are the order parameter and the free energyyhere B* is a characteristic field related to the transition
of the system, respectively, aidis the Landau-Khalatnikov field B, 4= B* (1+ 2/9x), whereu = ayy/ 82. Note that for a
damping coefficient. We define the order parameter of thgecond-order transition3=0), B,4=B*. For a first-order
vortex system in a way analogous to the definition of thephase transition, metastable states of the system are found
order parameter in order-disorder transitions in atomithetweerB* andB** =B*(1+ 1/4u). ForB<B* the disor-

solids? In the latter case, the order paramegris a set of  dered state is unstable while the ordered state, characterized
Fourier components of the atomic density taken atyy

reciprocal-lattice vectorg=G. In particular, for an ordered
lattice phasgq=const* 0 atq=G, whereas for a disordered B
statep,=0 for all g#0. Extending this approach to the vor- ‘I’Z‘I’ozﬁ[lJr V1+4u(1-B/BY)],

tex order-disorder phase transition, we note that in small-

angle neutron-scattering experiments in BSCC®ragg s stable. FoB>B** the ordered state is unstable, while the
peaks are observed at low temperatures and low fieldgjsordered state with’ =0 is thermodynamically favorable.
mainly in the first Brillouin zone; these peaks are smearegy|| the above results are deduced from the conventional Lan-
for fields larger tharB,4. Thus, only one componepi is  dau theory for phase transitichby replacing temperature
sufficient to completely describe the order paramepey, with the inductionB.
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In solving Eq.(1) we assume an initial nonequilibrium 1.0 1.0
disordered vortex statel(=0) caused by the rapid injection ]
of the vortices through nonuniform surface barrigts We 0.8 I 08
show that Eq(1) can describe the nucleation and growth of "‘x
the vortex ordered statel{=¥,). To demonstrate this point - 087 i 06
we assume an induction distribution with a constant \i 0.4] ,! ! o4
gradient® B/d, i.e., B=B,— B(1—|x|/d), whered is half- ' | \
width of the sample an8, is the applied field. In this case, 0.2 I 0.2
Eq. (1) can be solved analytically for both the nucleation and /.f'/ ‘\\\
growth processes. 0.0 : e ; 0.0
A solution for the nucleation process, i.e., timtial 1.0 05 0.0 05 10
growth of the order paramete¥ (W close to zerp is ob- x/d
tained by neglecting nonlinear terms in Ed), FIG. 1. Nucleation and growth of the order parameter. The
- . nucleation process is demonstrated by the dashed curves calculated
N N Ba—B B X from Eq. (5) for A,=A,6, at timesA,t=8.12, 9.86, 11.02. The
T ot WjL T Ao T %G g V.o @ solid lines, describing the growth process, are calculated from Eq.

(9) at different locationst; /d=0.3, 0.5, 0.7, 0.9.
The boundary conditions dictated by symmetry are
dW(x,t)/dx|,—o=0; also we require tha¥ (x,t) is a nondi-  front will develop separating between the nucleating ordered
verging function. The solution of Ed4) is then phase and the initial unstable disordered phase, as described
- above. Thus, when the induction gradient is large enough,
_ Ant A . we expect the appearance of a sharp interface between the
\P(X’t)_zo An@ i Al (X/Xssn), ®) growing stable(ordered phase and the retreating unstable

(disordered phase.

where In describing thegrowth process, i.e., the movement of
B_B a3 B\ 2B the ?nterface bereen the ordered and' disordered phases,
Ap=Tapl 1- ———5, h) _) ) (6)  honlinear terms in Eq(l) must be taken into account. We
B* 2 B* express the linearly varying functioB(x) as B=B;

Ai is the Airy function, s,=0.685,3.9,7.06... are the so- “_L(NB/d)(X_Xf)’ where Bf:(Ba_NB)_“LXfE/d_ is the induc-
lutions of Jyx(s)=J_(s,) whered, is the Bessel func- t|on~ at the front located at;. In this notationa=1—[B;
tion, and x.=(DdB*/aoB)Y3=d(apB*/uB)3. Here ap +(B/d)(x—x;)]/B*. Eq. (1) can be written in the reference
=D'y/,82d25is a dimensionless exchange coefficient. Noteffame of an observer moving with the front by introducing a
thats, is a constant of ordem, growing with increasing. new variable &=x—x(t) and defining x;(t)=xo

It is evident from Eq(5) that only terms withA >0 play +f})vf(.t’)dt’, wherev; i§ the time-dependgnt front velocity'
a role in the nucleation process. FB,—B>B*, i.e., the andxg is a constant. With the new set of independent vari-

entire sample is in a metastable or a stable state\ alhre ables €.By) Eq. (1) becomes

negative, implying that the nucleation process cannot take
( - Be{X:(t)}

B*

place. ForB,=B the induction at the center of the sample is ot
zero and the rate of the nucleation process is maximum. Re- r
lation (6) shows that the exponent with=0 yields the fast- -
est nucleation rate, thus governing the nucleation process. _ B¢
This process may thus be approximately described by the dB*
first term in Eq.(5). In this approximation, the development

of the order parameter during the nucleation process is d€®ne can solve this equation analytically provided the front
scribed by the dashed lines in Fig. 1. Note that the analyticalidth A<dB;/B. In this case, the termsuv{/T)(B/

solution (5) describes only the first stages of the nucleationd)(aq,/aB ) and—a (Eg/d B*)W may be neglectebe The
process, where the nonlinear terms in Ef). may be ne- solution Off Eq.(8) is Other?3 '

glected. This solution ceases to apply when the valu# of
approachesl, i.e., after a time period of order Aj. The £\t
width of the ordered domain is them— X (1+sy) ~Xs. The V=V, 1+ex;{ K)] , 9
condition for appearance oflacalizeddomain in the sample

B a

=T (7 A2 Ag
2u(1—B¢/B*)+ 1+ J1+4u(1—B/B*)
If this condition is not satisfied, themomogeneousansfor-

center may be then obtained from the inequatity<d or where
mation of the unstable phase takes place. Otherwise, a shaipthe front width. The front velocity ;=dx;/dt is

o ~Ba\1f) 92
= +C¥0

“oETdam,) P

V+pU2— 4T3, (8)

(10
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~, ' To demonstrate this scenario we solved numerically the
LK Eg. (1), allowing for flux creep. We assume a
V¥-dependent local current density

Y
J(\If,t):Jl(t)(l——

N4
vty @

where J,(t)and J,(t) are the current densities in the disor-
dered and in the ordered phases, respectit/dBased on the
experimental observatiohsve further assumé;(t)=Jo,(1
+1t/t) "9t and J,(t)=Jgx(1+1t/t,) " “2. The induction B

ent applied fields taken from Ref. 3, a(@olid line) to Eq.(11), and (and thus the coefficient) may n.OW be expressed in te_rms
results of numerical solutionsolid symbols for the indicated ap- of the order paramgtelf(x) by using the Maxwell equation
plied fields. The fit was done with two fitting parametegsandx, B4t =Ba—4m/c[,J((y,1),)dy. As before, we assume
after B,y was estimated to be approximately 400 G, correspondin@" initial disordered phase throughout the entire sample

—_ ‘theoretical fit G2
300 B,[G] 400

FIG. 2. Experimental datéopen symbolsof v¢(By) for differ-

to an induction value where the velocity is going to zero. W(t=0x)=0.
In order to solve Eq(1) numerically we define dimen-
B * — * sionless parameter&i=B/B*, j=47Jd/(cB*), x'=x/d,
— 6/(1-B;/B*)+ 1+ V1+4u(1-By/B*) _ t'=tB2l )y, and W’ =W/Wo(B** )= 2W y/ 8. Equation(1)
V2u(1-B,/B*)+ 1+ 1+ 4(1-B,/B*) then becomes
(12) )
v dqﬂ+ [1-b(x")]¥ Jrl\If2 1\P3
Here —=a —b(x IR Sl 2
. Paxz M 2 4
vo=T\DB%4y=Tagd\ap/2u, A2=4DylB?=4d%ap, L
(12) +f'(x',t"), (14)

andB;=B{x;(t)}. The solid lines in Fig. 1 show givenin  Wheref’=2fy/(Bay) is a dimensionless noise that must be

Eq. (9) for different locations of the front;, describing the introduced in the numerical solution. _
propagation of the ordered phase. The values of thédimensionlessparameters used in the

We turn now to discuss the front velocity, Eq. (11) numerical calculations are based on experimental measure-
and the front widthA, Eq. (10). We first note that ; and A ments. In particular, from the fit of Eq11) to the experi-

do not depenaxplicitly on time or applied field but o, ~ Mmental datd of v((By) in Fig. 2 we estimatg.=1.5, thus
the local induction at the front. Several important conclu-

sions may be drawn from these equations: 1.0
(1) As B; approaches,q the velocity approaches zero 0.8
[thev¢(B;) dependence is described by the solid line in Fig.
2]. o 0.6
(2) The motion of the front toward the sample edge is §
accompanied by an increase in the inducti&nat the front, 041
resulting in a decrease in the velocity with time. 0.2
(3) The front widthA decreases with the increase Bf ' A
implying that for a “stronger” first-order transition the front 0.0 ZAN
is steeper. Also from Eq10) it is obvious that the exchange 10 05 00 05 1.0

coefficientD causes the front to be smeared. In addition,
increasingD and/or the damping coefficiet results in an
acceleration of the front motiojsee Eq.(11)].

So far we have demonstrated dynamic coexistence of or-
dered and transient disordered vortex phases, with a sharp
interface between them, assuming a time-independent induc-
tion distribution with a constant gradient. In high-
temperature superconductors, however, the induction distri-
bution varies significantly with time due to flux creep. In
addition, one may expect different flux creep laws for the ) , : .
different vortex phases. As a result, the nucleation and 10 05 00 03 10
growth of the ordered vortex phase are manifested experi- x/d
mentally by the appearance of a break in the induction pro- FIG. 3. Order parametefupper caseand induction profiles
file and movement of this break toward the sample e°’dge.(|ower casg for j;=1.7(1+t") %% and j,=1.5(1+t") %5 The
The location of the break is expected to coincide with theprofiles are shown for dimensionless timés-1, 4, 9, 10, 11, 12,
location of the moving front of the order parameter. 14, 16, 18, 22, 27, 35, 44, 54, 65, 79, 99.

B/B*

220502-3



RAPID COMMUNICATIONS

GILLER, SHAPIRO, SHAPIRO, SHAULOV, AND YESHURUN PHYSICAL REVIEW B3 220502R)

Boq/B*=1.148, B** /B* =1.166. A value of 10* for ap The theoretical predictions described above are confirmed
=[2uvo/ (T agd)]? [see Eq(12)] is estimated from the ex- experimentally in BSCCO crystafsin particular, breaks in
perimental value ;=20 um/s obtained from the same fit; a the induction profiles were recorded following a sudden ap-
value of Ag~T'ap=10 s ! is estimated from the time plication of external field of intensity close tB,q. This
elapse between switching on the external field and the agreak moves toward the sample edge at a velocity that de-
pearance of a break in the induction profile. A typical valuepends only orB;, the value of the induction at the break.
of d~300 um for the sample half-width was used. Based Thus, the dependence ©f on B; is not affected by magnetic

on the analysis of magnetic relaxation we take=0.3, a, relaxation. As shown in Fig. 2, thanalytical curve (solid
=0.5. In addition, a noise level df,,,=10 * is assumed. line) of v¢(By), Eq.(11), is in good agreement with the ex-
The system of equations completed by boundary and initiaperimental result¢éopen symbols Moreover, numerical re-
conditions has been solved numerically utilizing the Eulersults (solid symbols in Fig. Rfor v¢(By) for different ap-
method. The unit space interval was divided into 200 segplied fields also show a good agreement with the analytical
ments, and a time step of %30 2 (in dimensionless unijs ~ curve demonstrating that magnetic relaxation does not affect
was used providing a stability of the numerical procedurethe dependence af; on By .

The results foB,/B* =1.1 are shown in Fig. 3. The upper  Finally, we note that two velocities govern the vortex dy-
case shows the spatial dependence of the order parametern@mics in the process of the phase transformation: The inter-
different times. The nucleation appears at the sample centéace velocityv; and the flux velocity g, due to creep. The
att’~10, forming a sharp front that propagates toward theeffect of the latter on the shape of the interface must be taken
sample edgé® The lower case of Fig. 3 shows the time into account in close vicinity oB,q wherev;—0.

evolution of the induction profiles during the nucleation and

growth processes. A sharp break in the profiles appears at the This research was supported by The Israel Science Foun-
location of the front of the order parameter after the nucle-dation founded by the Israel Academy of Sciences and
ation is completed. As expected, the break in the inductiotHumanities—Center of Excellence Program, and by the Hei-
profile and the front of the order parameter move togethenrich Hertz Minerva Center for High Temperature Supercon-
toward the sample edge. Note that a break in the inductioductivity. Y.Y. acknowledges support from the U.S.-Israel
profile can be observed outside the region of phase metast&inational Science Foundation. D.G. acknowledges support
bility (i.e., for B;<B*). from the Clore Foundation.
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