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Crystallization of the ordered vortex phase in high-temperature superconductors
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The Landau-Khalatnikov time-dependent equation is applied to describe the crystallization process of the
ordered vortex lattice in high-temperature superconductors after a sudden application of a magnetic field.
Dynamic coexistence of a stable ordered phase and an unstable disordered phase, with a sharp interface
between them, is demonstrated. The transformation to the equilibrium ordered state proceeds by movement of
this interface from the sample center toward its edge. The theoretical analysis dictates specific conditions for
the creation of a propagating interface and provides the time scale for this process.
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The process of formation of various equilibrium phas
after a sudden change in the thermodynamic conditions
topic of wide theoretical1 and experimental2 interest. Obvi-
ously, the initial state created immediately after the abr
change is a nonequilibrium, unstable state. The transfor
tion of this state to the thermodynamic equilibrium state m
proceed either homogeneously throughout the entire sys
or by nucleation of a spatially localized domain of the eq
librium phase, creating a front that propagates until equi
rium is reached in the entire system. The latter process
been recently observed in the vortex system
Bi2Sr2CaCu2O81d ~BSCCO! crystals.3,4 This vortex system
exhibits a transition between ordered and disordered ph
at a temperature-independent transition fieldBod.400 G.5,6

High temporal resolution magnetooptical measuremen3,4

indicated that immediately after a sudden application of
ternal magnetic fieldBa&Bod , a transient disordered vorte
state is created, followed by a nucleation and front propa
tion of an ordered vortex state.3 The purpose of this paper i
to analyze theoretically the crystallization process of the v
tex ordered phase, i.e., the nucleation process and the
ation of a front and its motion.

Our analysis is based on the Landau-Khalatnikov~LK !
time-dependent equation7

]C

]t
52G

dF

dC
, ~1!

whereC andF are the order parameter and the free ene
of the system, respectively, andG is the Landau-Khalatnikov
damping coefficient. We define the order parameter of
vortex system in a way analogous to the definition of
order parameter in order-disorder transitions in atom
solids.8 In the latter case, the order parameterrq is a set of
Fourier components of the atomic density taken
reciprocal-lattice vectorsq5G. In particular, for an ordered
lattice phaserq5constÞ0 atq5G, whereas for a disordere
staterq50 for all qÞ0. Extending this approach to the vo
tex order-disorder phase transition, we note that in sm
angle neutron-scattering experiments in BSCCO,5 Bragg
peaks are observed at low temperatures and low fi
mainly in the first Brillouin zone; these peaks are smea
for fields larger thanBod . Thus, only one componentrG1

is

sufficient to completely describe the order parameter,rG1
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being the value of the Fourier component of thevortexden-
sity at the minimal vector of the reciprocal lattice. In order
describe the kinetics of the phase transition we allow
order parameter to be temporally and spatially depend
C(r ,t)[rG1

(r ,t), assuming thatC(r ) varies slowly over
the intervortex distance. The scalar real order param
C(r ,t) so defined, distinguishes between two thermod
namic solid phases of the vortex matter:C50 for the disor-
dered state andC5C0Þ0 for the ordered state.

In the Ginzburg-Landau formalism, the phase transit
between the ordered and disordered phases may be desc
by a free-energy density functionalF

F5
1

2
D~¹C!22

1

2
aC22

1

3
bC31

1

4
gC4, ~2!

where a, b, g, and D are the Landau coefficients. Thes
coefficients depend on the vortex-vortex and vortex-pinn
interactions, and their evaluation requires a microsco
theory that does not yet exist. Note that Eq.~2! does not
describe the whole free energy of the vortex system, but o
that part that is varying through the phase transition, i.e.,C
dependent.

As the order-disorder vortex phase transition in BSCCO
field driven, we express the parametera as a function ofB,

a5a0~12B/B* !, ~3!

where B* is a characteristic field related to the transitio
field Bod5B* (112/9m), wherem5a0g/b2. Note that for a
second-order transition (b50), Bod5B* . For a first-order
phase transition, metastable states of the system are fo
betweenB* andB** 5B* (111/4m). For B,B* the disor-
dered state is unstable while the ordered state, characte
by

C5C05
b

2g
@11A114m~12B/B* !#,

is stable. ForB.B** the ordered state is unstable, while th
disordered state withC50 is thermodynamically favorable
All the above results are deduced from the conventional L
dau theory for phase transitions9 by replacing temperature
with the inductionB.
©2001 The American Physical Society02-1
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In solving Eq. ~1! we assume an initial nonequilibrium
disordered vortex state (C50) caused by the rapid injectio
of the vortices through nonuniform surface barriers.3,11 We
show that Eq.~1! can describe the nucleation and growth
the vortex ordered state (C5C0). To demonstrate this poin
we assume an induction distribution with a consta
gradient10 B̃/d, i.e., B5Ba2 B̃(12uxu/d), whered is half-
width of the sample andBa is the applied field. In this case
Eq. ~1! can be solved analytically for both the nucleation a
growth processes.

A solution for the nucleation process, i.e., theinitial
growth of the order parameterC (C close to zero!, is ob-
tained by neglecting nonlinear terms in Eq.~1!,

1

G

]C

]t
5D

]2C

]x2
1S a02a0

Ba2B̃

B*
2a0

B̃

B*

x

dD C. ~4!

The boundary conditions dictated by symmetry a
dC(x,t)/dxux5050; also we require thatC(x,t) is a nondi-
verging function. The solution of Eq.~4! is then

C~x,t !5 (
n50

`

AneLnt Ai ~x/xs2§n!, ~5!

where

Ln5Ga0F12
Ba2B̃

B*
2§nS aD

m D 1/3S B̃

B*
D 2/3G . ~6!

Ai is the Airy function, §n50.685,3.9,7.06, . . . are the so-
lutions of J2/3(§n)5J22/3(§n) whereJn is the Bessel func-
tion, and xs5(DdB* /a0B̃)1/35d(aDB* /mB̃)1/3. Here aD
5Dg/b2d2 is a dimensionless exchange coefficient. No
that §n is a constant of ordern, growing with increasingn.

It is evident from Eq.~5! that only terms withLn.0 play
a role in the nucleation process. ForBa2B̃.B* , i.e., the
entire sample is in a metastable or a stable state, allLn are
negative, implying that the nucleation process cannot t
place. ForBa5B̃ the induction at the center of the sample
zero and the rate of the nucleation process is maximum.
lation ~6! shows that the exponent withn50 yields the fast-
est nucleation rate, thus governing the nucleation proc
This process may thus be approximately described by
first term in Eq.~5!. In this approximation, the developme
of the order parameter during the nucleation process is
scribed by the dashed lines in Fig. 1. Note that the analyt
solution ~5! describes only the first stages of the nucleat
process, where the nonlinear terms in Eq.~1! may be ne-
glected. This solution ceases to apply when the value oC
approachesC0, i.e., after a time period of order 1/L0. The
width of the ordered domain is thenw;xs(11§0);xs . The
condition for appearance of alocalizeddomain in the sample
center may be then obtained from the inequalityxs!d or

B̃

B*
@

aD

m
. ~7!

If this condition is not satisfied, thenhomogeneoustransfor-
mation of the unstable phase takes place. Otherwise, a s
22050
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front will develop separating between the nucleating orde
phase and the initial unstable disordered phase, as desc
above. Thus, when the induction gradient is large enou
we expect the appearance of a sharp interface between
growing stable~ordered! phase and the retreating unstab
~disordered! phase.

In describing thegrowth process, i.e., the movement o
the interface between the ordered and disordered pha
nonlinear terms in Eq.~1! must be taken into account. W
express the linearly varying functionB(x) as B5Bf

1(B̃/d)(x2xf), whereBf5(Ba2B̃)1xfB̃/d is the induc-
tion at the front located atxf . In this notationa512@Bf

1(B̃/d)(x2xf)#/B* . Eq. ~1! can be written in the referenc
frame of an observer moving with the front by introducing
new variable j5x2xf(t) and defining xf(t)[x0

1*0
t v f(t8)dt8, wherev f is the time-dependent front velocit

andx0 is a constant. With the new set of independent va
ables (j,Bf) Eq. ~1! becomes

v f

G
S 2

]C

]j
1

B̃

d

]C

]Bf
D 5D

]2C

]j2
1a0S 12

Bf$xf~ t !%

B*

2
B̃j

dB*
D C1bC22gC3. ~8!

One can solve this equation analytically provided the fro
width D!dBf /B̃. In this case, the terms (v f /G)(B̃/
d)(]C/]Bf) and2a0(B̃j/dB* )C may be neglected.12 The
solution of Eq.~8! is then13

C5C0H 11expS j

D D J 21

, ~9!

where

D25
D0

2

2m~12Bf /B* !111A114m~12Bf /B* !
~10!

is the front width. The front velocityv f5dxf /dt is

FIG. 1. Nucleation and growth of the order parameter. T
nucleation process is demonstrated by the dashed curves calcu
from Eq. ~5! for An5A0dn,0 at timesL0t58.12, 9.86, 11.02. The
solid lines, describing the growth process, are calculated from
~9! at different locationsxf /d50.3, 0.5, 0.7, 0.9.
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v f5v0

6m~12Bf /B* !111A114m~12Bf /B* !

A2m~12Bf /B* !111A114m~12Bf /B* !
.

~11!

Here

v05GADb2/4g5Ga0dAaD/2m, D0
254Dg/b254d2aD ,

~12!

andBf[Bf$xf(t)%. The solid lines in Fig. 1 showC given in
Eq. ~9! for different locations of the frontxf , describing the
propagation of the ordered phase.

We turn now to discuss the front velocityv f , Eq. ~11!,
and the front widthD, Eq. ~10!. We first note thatv f andD
do not dependexplicitly on time or applied field but onBf ,
the local induction at the front. Several important concl
sions may be drawn from these equations:

~1! As Bf approachesBod the velocity approaches zer
@thev f(Bf) dependence is described by the solid line in F
2#.

~2! The motion of the front toward the sample edge
accompanied by an increase in the inductionBf at the front,
resulting in a decrease in the velocity with time.

~3! The front widthD decreases with the increase ofb,
implying that for a ‘‘stronger’’ first-order transition the fron
is steeper. Also from Eq.~10! it is obvious that the exchang
coefficient D causes the front to be smeared. In additio
increasingD and/or the damping coefficientG results in an
acceleration of the front motion@see Eq.~11!#.

So far we have demonstrated dynamic coexistence of
dered and transient disordered vortex phases, with a s
interface between them, assuming a time-independent in
tion distribution with a constant gradient. In high
temperature superconductors, however, the induction di
bution varies significantly with time due to flux creep.
addition, one may expect different flux creep laws for t
different vortex phases. As a result, the nucleation a
growth of the ordered vortex phase are manifested exp
mentally by the appearance of a break in the induction p
file and movement of this break toward the sample edg3

The location of the break is expected to coincide with
location of the moving front of the order parameter.

FIG. 2. Experimental data~open symbols! of v f(Bf) for differ-
ent applied fields taken from Ref. 3, a fit~solid line! to Eq.~11!, and
results of numerical solutions~solid symbols! for the indicated ap-
plied fields. The fit was done with two fitting parametersv0 andm,
after Bod was estimated to be approximately 400 G, correspond
to an induction value where the velocity is going to zero.
22050
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To demonstrate this scenario we solved numerically
LK Eq. ~1!, allowing for flux creep. We assume
C-dependent local current density

J~C,t !5J1~ t !S 12
C

C0
D1J2~ t !

C

C0
, ~13!

whereJ1(t)and J2(t) are the current densities in the diso
dered and in the ordered phases, respectively.14 Based on the
experimental observations3 we further assumeJ1(t)5J01(1
1t/t1)2a1 and J2(t)5J02(11t/t2)2a2. The induction B
~and thus the coefficienta) may now be expressed in term
of the order parameterC(x) by using the Maxwell equation
B(x,t)5Ba24p/c*x

dJ„C(y,t),t…dy. As before, we assume
an initial disordered phase throughout the entire sam
C(t50,x)50.

In order to solve Eq.~1! numerically we define dimen
sionless parameters:b5B/B* , j 54pJd/(cB* ), x85x/d,
t85tb2G/g, andC85C/C0(B** )52Cg/b. Equation~1!
then becomes

]C8

]t8
5aD

d2C8

dx82
1m@12b~x8!#C81

1

2
C822

1

4
C83

1 f 8~x8,t8!, ~14!

wheref 852 f g/(ba0) is a dimensionless noise that must
introduced in the numerical solution.

The values of the~dimensionless! parameters used in th
numerical calculations are based on experimental meas
ments. In particular, from the fit of Eq.~11! to the experi-
mental data3 of v f(Bf) in Fig. 2 we estimatem51.5, thus

FIG. 3. Order parameter~upper case! and induction profiles
~lower case! for j 151.7(11t8)20.3 and j 251.5(11t8)20.5. The
profiles are shown for dimensionless timest851, 4, 9, 10, 11, 12,
14, 16, 18, 22, 27, 35, 44, 54, 65, 79, 99.

g
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Bod /B* 51.148, B** /B* 51.166. A value of 1024 for aD
5@2mv0 /(Ga0d)#2 @see Eq.~12!# is estimated from the ex
perimental valuev0'20 mm/s obtained from the same fit;
value of L0;Ga0'10 s21 is estimated from the time
elapse between switching on the external field and the
pearance of a break in the induction profile. A typical val
of d'300 mm for the sample half-width was used. Bas
on the analysis of magnetic relaxation we takea150.3, a2

50.5. In addition, a noise level off max8 51024 is assumed.
The system of equations completed by boundary and in
conditions has been solved numerically utilizing the Eu
method. The unit space interval was divided into 200 s
ments, and a time step of 2.531023 ~in dimensionless units!
was used providing a stability of the numerical procedu
The results forBa /B* 51.1 are shown in Fig. 3. The uppe
case shows the spatial dependence of the order parame
different times. The nucleation appears at the sample ce
at t8;10, forming a sharp front that propagates toward
sample edge.15 The lower case of Fig. 3 shows the tim
evolution of the induction profiles during the nucleation a
growth processes. A sharp break in the profiles appears a
location of the front of the order parameter after the nuc
ation is completed. As expected, the break in the induc
profile and the front of the order parameter move toget
toward the sample edge. Note that a break in the induc
profile can be observed outside the region of phase meta
bility ~i.e., for Bf,B* ).
kl.
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The theoretical predictions described above are confirm
experimentally in BSCCO crystals.3 In particular, breaks in
the induction profiles were recorded following a sudden
plication of external field of intensity close toBod . This
break moves toward the sample edge at a velocity that
pends only onBf , the value of the induction at the brea
Thus, the dependence ofv f on Bf is not affected by magnetic
relaxation. As shown in Fig. 2, theanalytical curve ~solid
line! of v f(Bf), Eq. ~11!, is in good agreement with the ex
perimental results~open symbols!. Moreover, numerical re-
sults ~solid symbols in Fig. 2! for v f(Bf) for different ap-
plied fields also show a good agreement with the analyt
curve demonstrating that magnetic relaxation does not af
the dependence ofv f on Bf .

Finally, we note that two velocities govern the vortex d
namics in the process of the phase transformation: The in
face velocityv f and the flux velocityvF , due to creep. The
effect of the latter on the shape of the interface must be ta
into account in close vicinity ofBod wherev f→0.
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