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Oscillating flux instability in vortex matter
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Abstract

We explain theoretically an oscillatory behaviour in space and time of the magnetic induction in Bi2Sr2CaCu2O8+d crystals during
magnetic relaxation. This new ‘‘flux waves’’ phenomenon appears near the order–disorder vortex phase transition, under specific con-
ditions of temperature and induction gradient. Our theory is based on two coupled equations: The Landau–Ginzburg equation for
the order parameter of the vortex phase transition and the diffusion equation for the magnetic induction. Linear stability analysis of these
equations shows an appearance of oscillatory instabilities characterized by a period and wavelength that are in accordance with the
experimental results.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Oscillatory instabilities, both in space and time, were
recently observed in the magnetic induction of Bi2Sr2Ca-
Cu2O8+d (BSCCO) crystals exposed to a steady magnetic
field [1]. This ‘‘flux waves’’ phenomenon was observed in
the vicinity of the vortex order–disorder phase transition
line, in a region where the induction profile is relatively flat.
The wave pattern exhibits a well defined wave length and
amplitude, and it moves in the opposite direction to the
incoming flux from the edge of the sample (vortices creep
into the sample due to regular relaxation after application
of an external magnetic field). In this paper we outline a
theory which predicts spatiotemporal instabilities in the
vortex matter under the conditions found experimentally,
i.e. proximity to the order–disorder transition and a nearly
flat profile.
2. Theory and discussion

In our theory we distinguish between the vortex phases
by means of an order parameter W : W = 0 and
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W = W0(B) for the disordered and ordered vortex phases,
respectively [2]. The evolution of W(x, t) is described by
the Landau–Ginzburg dynamic equation:
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and a = a0(1 � B/Bod), D, c0, a0 are the Landau expansion
coefficients, C is the relaxation coefficient. The magnetic
induction B is governed by a non-linear diffusion equation
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Here, Jc[W] is the critical current density which changes
smoothly from a large value at the disordered vortex phase
to a small value at the ordered phase, and r = U0/T where
U0 and T are the pinning potential and the temperature,
respectively, and RF is the flux flow resistance.

Eqs. (1) and (2) are coupled by the critical current Jc[W]
which in our model is assumed to be

J c½W� � J c0 expð�nW=W0Þ; ð3Þ
where Jc0 is the critical current in the disordered phase and
n is a numerical model factor.

Eqs. (1)–(3) yield a time-independent solution: B0(x) �
BL + (BR � BL)x/L, W0ðxÞ �
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Fig. 1. Real and imaginary parts of X(q) for different induction slopes (in
units of Jc0) J0 = 0.0171 (1), 0.0165 (2), 0.0159 (3).
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where BL and BR are the magnitudes of the magnetic
induction at the left (x = 0) and right (x = L) sides of the
sample, respectively.

Led by the experimental observations, we assume an
almost flat induction profile. Presenting W and B in the
as W = W0(x) + /eiqx+Xt; B = B0(x) + beiqx+Xt, where b
and / are the amplitudes of the perturbations one obtains
after linearization of Eqs. (1)–(3)
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A graphical description of the real and imaginary part of
X(q) in units of X ¼ 8p2RnJ 2

c0=Bc2Bod, q = 8p2Jc0/cBod, for
different parameters, is presented in Fig. 1 where we
assume a0C = 10 Hz [2] and e = 1 � B/Bod = 0.2, for differ-
ent slopes. The Re(X) presents the well known Turing
instability [3]. The range of q for which Re(X) > 0 and
Im(X)50 presents an instability regime, characterized by
oscillations in time and space with growing amplitude.
The most unstable mode is characterized by a wave number
qm corresponding to the maximum in Re(X) and by an
oscillation frequency Xm corresponding to the Im(X) at qm.

Note that the instability described above falls into the
category of threshold effects. This is demonstrated in
Fig. 1. As one can see from this figure, the instability
(i.e., positive Re(X(q))) appears above some threshold
slope J0 � 0.0651Jc0.

In summary, we presented a theory predicting oscilla-
tory behaviour of the induction in time and space in the
vortex matter of superconductors near the vortex order–
disorder phase transition. Our theory yields the size of
the wavelength and period of the oscillations, as well as
the temperature dependence of the period, which is in good
accordance with the experimental data reported recently
for BSCCO [1].
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