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a b s t r a c t 

Analysis of superconducting ladders consisting of rectangular loops, yields an Ising like expression for 

the total energy of the ladders as a function of the loops vorticities and the applied magnetic field. This 

expression shows that fluxoids can be treated as repulsively interacting objects driven towards the ladder 

center by the applied field. Distinctive repulsive interactions between fluxoids are obtained depending 

on the ratio l between the loops length and the common width of adjacent loops. A ‘short range’ and a 

‘long range’ interactions obtained for l � 1 and l � 1, respectively, give rise to remarkably different flux- 

oid configurations. The different configurations of fluxoids in different types of ladders are illustrated by 

simulations. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Macroscopic quantum phenomena continue to attract attention

since the early days of quantum mechanics [1] . A prominent exam-

ple of a macroscopic quantum phenomenon is exhibited by loops

and networks made of thin superconducting wires. The quantity

quantized in these multiply-connected systems is the fluxoid de-

fined as: ( 4 πλ2 /c ) 
∮ 
�
 J · −→ 

dl + φ, where � J is the density of the shield-

ing current in a loop, λ is the penetration depth, and φ is the mag-

netic flux threading the loop. In each and every loop of a network

the fluxoid must be an integer multiple of the flux quantum φ0 

[2] . The requirement of minimum energy determines the number

and arrangement of fluxoids in the network giving rise to periodic

changes in the energy as a function of the external field. 

Fluxoid quantization effects have been studied extensively, both

theoretically and experimentally, in a variety of superconducting

networks [3-17] . However, most of these studies focus on the

phase boundary between the superconducting and the normal

states, paying less attention to the fluxoids configuration in the

networks as a function of the applied magnetic field. The limited

number of studies considering fluxoids configurations present re-

sults of experimentally measured or theoretically calculated con-

figurations in various networks, providing no intuitive understand-

ing of the underlying physics [6,17-19] . The purpose of the present

work is to elucidate the mechanism governing the fluxoid configu-

ration in finite superconducting networks as a function of the ap-

plied field. Understanding the physics behind the different fluxoid

configurations may lead to the development of new concepts in
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fluxonics’ – a growing research area aiming at exploiting super-

onductors in digital circuits [20-23] . 

We theoretically analyze the simplest case of a superconducting

D network (‘ladder’) using the “current squared” model (known

s the “J 2 model”) [6,18,24] . In this model the kinetic energy of the

etwork is calculated as the sum of the squared currents over all

he network wires, and the number and arrangement of the flux-

ids are determined by the requirement of minimum energy. Our

nalysis yields an Ising like expression for the total energy of the

etwork as a function of the loops’ vorticities and the applied mag-

etic field. This expression shows that fluxoids can be treated as

epulsively interacting objects subjected to an additional interac-

ion with the applied field. The field tends to direct the fluxoids

owards the network center while fluxoids repel each other tend-

ng to keep themselves apart. Competition between these two in-

eractions determines the equilibrium arrangement of fluxoids in

he network as a function of the applied field. 

We distinguish between three types of ladders depending on

he ratio l between the loops’ length and the common width of

djacent loops in the ladder. For l >> 1, the interaction between

uxoids is negligible and the ladder can essentially be considered

s a collection of separate, non-interacting loops. As the ratio l

ecreases toward 1, ‘short range’ repulsive interactions arise, de-

reasing exponentially with the relative positions of the fluxoids.

adders with l << 1 are characterized by a ‘long range’ interaction,

hich depends on the product of the fluxoids’ locations relative to

he ladder’s edges. The different configurations of fluxoids in these

ifferent types of ladders are illustrated by simulations. 

https://doi.org/10.1016/j.physc.2017.10.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/physc
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Fig. 1. Finite rectangular ladder consisting of N loops. 
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. Analysis 

Consider a superconducting ladder of finite length, consisting of

 rectangular loops of unit width and length l , as shown in Fig. 1 . 

The fluxoid quantization equation for loop i reads: 

 ( l + 1 ) J i − J i −1 − J i +1 = n i −
φ

φ0 

, (1) 

here n i is the vorticity of the loop i, φ is the flux threading this

oop, and by definition J i = 0 for i < 0 or i > N. For simplicity, the

oefficient 4 πλ2 / c is taken as 1. According to Eq. (1) , the set of the

uxoid quantization equations for all the loops can be written as a

atrix equation: 

ˆ 
 ·

→ 

J = 

→ 

n 

−
→ 

φ

φ0 

, (2) 

here the elements of the matrix ˆ A : 

 i j = 2 ( l + 1 ) δi, j − δi, j−1 − δi, j+1 , 

i, j being the Kronecker δ. 

The current vector � J can be calculated from Eq. (2) by inver-

ion: 

→ 

J = 

ˆ A 

−1 

( 

→ 

n 

−
→ 

φ

φ0 

) 

(3) 

Denoting the matrix ˆ A 

−1 as ˆ B , Eq. (3) can be written as a set of

quations: 

 i = 

N ∑ 

j=1 

B i j 

(
n j −

φ

φ0 

)
, i = 1 ..N. (4)

Using the J 2 model, knowledge of J i allows calculation of the en-

rgy E i of the loop i : 

 i = 2 lJ 2 i + 

1 

2 

( J i − J i −1 ) 
2 + 

1 

2 

( J i − J i +1 ) 
2 + 

1 

2 

J 2 1 δ1 ,i + 

1 

2 

J 2 N δN,i 

 J i [ ( 2 l + 1 ) J i − J i −1 − J i +1 ] + 

1 

2 

J 2 i −1 + 

1 

2 

J 2 i +1 + 

1 

2 

J 2 1 δ1 ,i + 

1 

2 

J 2 N δN,i , 

nd the total energy E of the network: 

 = 

N ∑ 

i =1 

E i = 

N ∑ 

i =1 

{ 

J i ( −J i + 2 ( l + 1 ) J i − J i −1 − J i +1 ) + 

1 

2 

J 2 i −1 + 

1 

2 

J 2 i +1 

} 

+ 

1 

2 

J 2 1 + 

1 

2 

J 2 N . (5) 

Using Eq. (1) and realizing that 
N ∑ 

i =1 

{ −J 2 
i 

+ 

1 
2 J 

2 
i −1 

+ 

1 
2 J 

2 
i +1 

} + 

1 
2 J 

2 
1 

+
1 
2 J 

2 
N 

= 0 , Eq. (5) becomes 

 = 

N ∑ 

i =1 

J i 

(
n i −

φ

φ0 

)
. (6) 

Inserting J from Eq. (4) yields 
i 
 = 

N ∑ 

i =1 

N ∑ 

j=1 

B i j 

(
n j −

φ

φ0 

)(
n i −

φ

φ0 

)
= 

= 

∑ 

i j 

B i j 

( 

n i n j − 2 

φ

φ0 

n i + 

(
φ

φ0 

)2 
) 

(7) 

The above expression for the total energy, E, is reminiscent of

he Ising model for the energy of a spin configuration, having

he form 

∑ 

i j 

J i j S i S j - μ
∑ 

j 

h j S j [25] ; n j , and B ij playing the role of

he Ising variable S j and the exchange energy J ij , respectively. The

rst term on the right hand side of Eq. (7) , ( 
∑ 

i j 

B i j n i n j ) , represents

he interaction between fluxoids, including the self-interactions
 

i 

B ii n i 
2 . The second term ( −2 φ

φ0 

∑ 

i j 

n i B i j ) expresses the interaction

etween the fluxoids and the effective magnetic field. The third

erm, ( φ
φ0 

) 2 
∑ 

i j 

B i j , is a constant, independent of the vorticities and

hus may be ignored. 

For the matrix ˆ A given in Eq. (2) , ˆ B = 

ˆ A 

−1 is a symmetric matrix

ith elements [26] : 

B i j = 

(
γ i 

1 − γ i 
2 

)(
γ N+1 − j 

1 
− γ N+1 − j 

2 

)
( γ1 − γ2 ) 

(
γ N+1 

1 
− γ N+1 

2 

) , for i ≤ j (8) 

here γ1 , 2 = ( l + 1 ) ±
√ 

( l + 1 ) 2 − 1 . Due to the symmetry of ˆ B , B ij 
or i > j can be calculated as B ji using Eq. (4) . Defining η ≡γ 2 / γ 1 ,

nd C ≡ 1 / ( 1 − η)( 1 − ηN+1 ) , Eq. (8) takes the form 

B i j = Cγ i − j−1 
1 

(
1 − ηi 

)(
1 − ηN+1 − j 

)
, for i ≤ j. (9) 

1 , γ 2 , η and C are geometrical factors that depend on the ele-

ent length l . These dependencies are shown in Fig. 2 . 

As clarified below, l determines the degree of coupling between

he loops. For l � 1, the coupling is weak, and for l � 1 the coupling

s strong. These two cases differ significantly from each other and

rom the intermediate case l � 1, on which interest is commonly

ocused. In the following we discuss these three limiting cases: 

Case 1: l � 1. In this case, C → 1, η → 0, and the off-diagonal el-

ments of the matrix ˆ B become negligible as compared to the di-

gonal elements. Thus, the dependence of J i on the vorticities of

oops, other than the loop i , can be neglected (see Eq. 4 ). In other

ords, the coupling between the loops is weak and the energy of

he ladder is approximately the sum of the energies of separate

oops: 

 = γ −1 
1 

N ∑ 

i =1 

( 

n i 
2 − 2 

φ

φ0 

n i + 

(
φ

φ0 

)2 
) 

. (10) 

Consequently, as the field increases, all the loops are occupied

ith fluxoids essentially in unison. 

Case 2: l � 1. In this case, η � 1, C ≈ 1 and γ 1 approximately

quals to the circumference 2( l + 1 ) of a single loop. Thus, it is

ustified to neglect in Eq. (9) powers of η as compared to 1, and ap-

roximate B ij as γ −( | i − j | +1 ) 
1 

. In this approximation, Eq. (7) becomes
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Fig. 2. The geometrical factors γ 1 , γ 2 , C and η as a function of the ratio l between 

the loop length and the common width of adjacent loops. 
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E = 

∑ 

i j 

γ −( | i − j | +1 ) 
1 

( 

n i n j − 2 

φ

φ0 

n i + 

(
φ

φ0 

)2 
) 

. (11)

The above expression shows that fluxoids can be treated as re-

pulsively interacting objects, with interaction energy that decreases

exponentially with their separation in the ladder. In order to min-

imize the total energy, the repulsive interaction between fluxoids

tends to keep them away from each other. The interaction between

the fluxoids and the effective magnetic field, represented by the

second term in Eq. (11) , ( −2 φ
φ0 

∑ 

i n i 
∑ 

j γ
−( | i − j | +1 ) 

1 
) , reduces the

energy depending on the fluxoids arrangement within the network.

It can be shown that the geometric progression factor in this term:

−∑ 

j γ
−( | i − j | +1 ) 

1 
∝ cosh ( ln ( γ1 )( 

N+1 
2 − i ) ) , which is minimal at the

center of the ladder ( i = 

N+1 ) . Thus, to minimize the total energy,
2 

Fig. 3. Normalized energy as a function of the normalized magnetic flux in ladders with

adjacent loops. 
he interaction with the field, tends to drive the fluxoids away from

he network edges towards the network’s center. As mentioned

bove, the third term in Eq. (8) , ( φ
φ0 

) 2 
∑ 

i j γ
−( | i − j | +1 ) 

1 
, is indepen-

ent of the vorticities and thus can be ignored. We conclude that

hile the external magnetic field tends to assemble the fluxoids

ear the ladder center, the fluxoids repel each other tending to

eep themselves apart. Competition between these two opposite

nteractions determines the equilibrium arrangement of fluxoids in

he network as a function of the applied field. The self-interaction

erm has no role as it has no spatial preference, because in this

ase the diagonal elements B ii = γ −1 
1 

are all the same. Considering

he first fluxoid which enters the ladder, it will always appear at

he center of the network (or next to it, in a ladder with an even

umber of loops) as it is affected only by the external field which

rives it to the center. As the field increases, a second fluxoid en-

ers the system, pushing the first one out of its central position

nd both fluxoids arrange themselves in an optimum configuration,

eeping apart from each other and away from the network edges.

he same principle determines the arrangements of the next flux-

ids entering the ladder as the field further increases. Rearrange-

ent of fluxoids in the network continues until the last fluxoid

nters at the network center completing one period in which each

oop is occupied with one fluxoid. Occupation of the loops in the

ollowing periods follows the same pattern. 

Case 3: l � 1. In this case, both γ 1 and η approach 1 and 

 i j → 

i ( N + 1 − j ) 

N + 1 

for i ≤ j. (12)

Thus, the repulsive interaction between fluxoids becomes de-

endent on the product of their locations relative to the lad-

er’s edges. This is in variance with the previous case ( l � 1) in

hich the interaction between fluxoids decreased exponentially

ith their relative locations. In addition, contrary to the case l � 1,

here the diagonal elements B ii = γ −1 
1 

are all the same, indepen-

ent of the location i , in the case l � 1 , B ii = i ( N + 1 − i ) / ( N + 1 )

as a maximum value of ( N + 1 ) / 4 at the center of the ladder (i.e.

or i = ( N + 1 ) / 2 ) and drops parabolicaly to N/ ( N + 1 ) at the lad-

er’s edges ( i = 1 , and i = N) . Consequently, the fluxoid self-energy,
 11 loops and different ratios l between the loop length and the common width of 
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Fig. 4. Fluxoid configuration as a function of field in ladders with 11 loops, and different ratio l = 0 . 1 , 1 and 10, between the loop length and the common width of adjacent 

loops. An empty loop is colored blue, and occupied loop is colored yellow or green. The green color indicates degenerated configurations which are incommensurate with 

the symmetry of the ladder. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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v  
etermined by the coefficients B ii , is maximum at the ladder’s cen-

er and drops towards the ladder’s edges. 

To examine the role of the self-energy in determining the flux-

ids arrangements, it is useful to isolate its contribution to the to-

al energy E . Exploiting the symmetry of ˆ B , the energy E can be

ritten in terms of the diagonal and the lower off-diagonal ele-

ents of ˆ B as follows: 

 = 

N ∑ 

i =1 

B ii n 

2 
i + 2 

N−1 ∑ 

i =1 

N ∑ 

j= i +1 

B i j n i n j 

− 2 

φ

φ0 

[ 

N ∑ 

i =1 

B ii n i + 

N−1 ∑ 

i =1 

N ∑ 

j= i +1 

B i j 

(
n i + n j 

)] 

. (13) 

The first term on the right hand side of Eq. (13) represents the

elf-interactions of the fluxoids, the second term represents the

utual interactions between fluxoids, and the third term expresses

he interaction between the fluxoids and the effective magnetic
 fi  
eld. Suppose that a single fluxoid enters the system at a loca-

ion i 0 . To minimize the energy, the location i 0 is determined by

 competition between the self-interaction which prefers location

t the ladder edges and the interaction with the field which fa-

ors location at the ladder’s center. Explicitly, the self-interaction

s 
i 0 ( N+1 −i 0 ) 

N+1 , and the interaction with the field is 

2 

φ

φ0 

[ 

B i 0 i 0 + 

N ∑ 

j= i 0 +1 

B i 0 j + 

i 0 −1 ∑ 

i =1 

B i i 0 

] 

= − φ

φ0 

i 0 ( N + 1 − i 0 ) . 

The total energy becomes: 

 0 ( N + 1 − i 0 ) 

(
1 

N + 1 

− φ

φ0 

)
. 

From this expression it is clear that the self-interaction pre-

ails only if φ < φ0 / ( N + 1 ) . However, in this case the entry of the

rst fluxoid would increase the energy of the system. A decrease
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in the energy requires that φ > φ0 / ( N + 1 ) . Thus, the interaction

with the field always prevails, and the first fluxoid appears at the

ladder center as in the previous case. Nevertheless, the location

dependent self-interaction and the stronger interaction between

fluxoids, when l � 1, give rise to different fluxoid arrangements at

higher fields, when more than one fluxoid occupies the ladder. In

particular, a larger number of fluxoid configurations are obtained,

including different configurations of the same number of fluxoids

at different fields. In addition, one obtains degenerated configura-

tions that are incommensurate to the ladder symmetry. These are

demonstrated with examples in the following section. 

3. Simulations 

The simulations described in this section demonstrate the dif-

ferent configurations of fluxoids in ladders with weak, medium and

strong coupling between the loops. In each case, the energy of the

ladder as a function of the loops vorticities and the external field

was calculated using Eq. (7) and the exact expression for the el-

ements B ij ( Eq. (8) ). For each given field the fluxoid arrangement

( n 1 , n 2 , . . . , n N ) which minimizes the energy was determined. 

The dashed curve in Fig. 3 shows the minimum energy as

a function of the normalized flux φ/ φ0 in a ladder of 11 ele-

ments with l = 10 . This curve exhibits the well-known Little-Parks

parabolas of a single loop [2] , demonstrating that the loops are es-

sentially decoupled. A diagram of the occupation vs. φ/ φ0 in the

first period is shown in Fig. 4 a. It demonstrates that, except for a

narrow region near φ/ φ0 = 

1 
2 , all the loops are either empty or oc-

cupied with a single fluxoid. 

A different picture is obtained when l is reduced to the order of

1. The minimum energy as a function of φ/ φ0 in the case l = 1 is

shown by the dotted curve in Fig. 3 . Due to the coupling between

the loops, the waveform of E vs . φ is remarkably changed, show-

ing a broad peak around φ0 /2 and crests at fluxes corresponding

to fluxoid entries. The fluxoids arrangements as a function of field

is illustrated in Fig. 4 b. The first fluxoid enters the sixth loop at

the ladder’s center at φ/ φ0 = 0 . 29 . As the field increases a second

fluxoid enters ladder, pushing the first one out of its central po-

sition and both fluxoids arrange themselves symmetrically in the

fourth and eighth loops, keeping apart from each other and away

from the network edges. As more fluxoids enter the ladder with

increasing field, rearrangement of fluxoids continues until the last

fluxoid enters the ladder’s center completing one period in which

each loop is occupied with one fluxoid. Occupation of the loops in

the following periods follows the same pattern. 

When l decreases much below 1, the coupling between the

loops increases significantly giving rise to a more complex E vs .

φ curve, as shown by the solid line in Fig. 3 for l = 0 . 1 . The ad-

ditional crests in the E ( φ) curve indicate additional configurations

of fluxoids through a period as illustrated in Fig. 4 c. It is interest-

ing to note that some of these configurations are incommensurate

to the ladder symmetry (marked in green color in Fig. 4 c). The first

fluxoid enters the ladder’s center, as in the previous case. However,

with the entry of the second fluxoid, both arrange themselves far-

ther away from each other, in the third and 9th loops, closer to

the ladder’s edges. With increasing field, both fluxoids rearrange

themselves in asymmetric positions, in the fourth and 9th loops.

This configuration is degenerated in energy with a configuration

where the third and 8th loops are occupied. Rearrangements from

symmetric to asymmetric positions also occurs with three and five

fluxoids, as shown in Fig. 4 c. A ‘checkerboard’ arrangement is ob-

tained with 5 and 6 fluxoids around φ0 /2. The configurations of 7,

8, 9, 10 and 11 fluxoids are complementary to the configurations

of the 4, 3, 2, 1 and zero fluxoids, respectively. 

Our analysis of superconducting ladders can be extended to

two dimensional superconducting networks. However, the interac-
ion terms between fluxoids, and between them and the external

eld, become more complicated. In a recent publication [27] we

howed numerical results for a 3 × 3 square network, based on the

 

2 model. These numerical-calculations yield 11 different configu-

ations, exceeding the number of loops in the network, due to re-

rrangement of the same number of fluxoids as the field increases.

mong the 11 different configurations, there are 6 degenerated

tates that are incommensurate to the network symmetry. Calcu-

ations of Kato and Sato based on the de-Gennes-Alexander equa-

ions for a network yield quite different results [17] . Involving the

ppearance of anti-fluxoids in the network, their calculations pre-

ict 9 configurations all of which are commensurate to the net-

ork symmetry. It should be noted, however, that by minimiz-

ng the Ginzburg–Landau free energy, asymmetric fluxoid patterns

ave been reported for a 10 × 10 network [28] . Experimental work,

sing, e.g., a scanning SQUID-on-tip [29,30] , is required to de-

ide between the predictions of the J 2 - and de-Gennes-Alexander

odels. 

. Summary and conclusions 

The fluxoids equilibrium positions in ladders consisting of rect-

ngular loops depend on the ratio l between the loops length and

he common width of adjacent loops. For l � 1 the interaction be-

ween fluxoids is weak and, in essence, they occupy the ladder’s

oops independently as if the loops are decoupled. In ladders with

 � 1, a ‘short range’ repulsive interactions between fluxoids arise,

hich decreases exponentially with their relative separation. The

uxoids arrangement is dictated by a competition between their

epulsive interaction and their interaction with the external mag-

etic field which drives them toward the ladder’s center. Ladders

ith l << 1 are characterized by a ‘long range’ interaction between

uxoids, which depends on the product of their locations relative

o the ladder’s edges. In the competition between this long range

nteraction and the interaction with the field another factor plays

 role, namely the fluxoids self-interaction. Consequently, in such

adders, different fluxoids configurations are obtained. In particu-

ar, additional configurations are obtained extending over a wider

ange of magnetic flux. Some of these configurations include the

ame number of fluxoids arranged in different positions, some of

hich are incommensurate to the ladder symmetry. 

Finally we note that the basic mechanism governing the flux-

id arrangements in ladders should also apply to two dimensional

etworks. However, a full extension of our analysis to two dimen-

ional networks remains for a future study. The results of this

tudy could connect to many theoretical and experimental works

n films with antidot arrays, which become networks in the limit

f large antidots, see e.g. [31] . 
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