GRAPHITE INTERCALATION COMPOUNDS WITH ReF₆ AND ToF₆: ELECTRONIC AND MAGNETIC PROPERTIES

H. SELIG

Institute of Chemistry, The Hebrew University, Jerusalem (Israel)
D. VAKNIN and D. DAVIDOV
Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem
(Israel)

Y. YESHURUN Physics Department, Bar Ilan University, Ramat Gan (Israel)

ABSTRACT

Magnetic, structural and electronic properties of new graphite compounds with ReF_6 and TcF_6 are presented. Together with previous data, these provide evidence for the existence of a correlation between the layer spacing, the charge transfer and electron affinities of the transition metal hexafluorides.

INTRODUCTION

The intercalation of transition metal hexafluorides (MF_6) into graphite is of interest, because these hexafluorides comprise a unique group of isostructural and nearly isodimensional intercalants differing mainly in their electronic configurations and oxidizing properties [1-5]. The intercalation reaction may generally be written as

$$nC + MF_6 \rightarrow C_n^{+x} (MF_6)_x (MF_6)_{1-x}$$
(1)

where x denotes the degree of charge transfer. Recently [4,5], we demonstrated that in some cases x can be extracted from simultaneous ESR and susceptibility studies of the magnetic intercalate species. Particularly, for $0sF_6$ we confirm an earlier suggestion by Bartlett [3] that x = 1. Similar measurements on graphite compounds with MoF₆ lead to a charge transfer, x = 0.2 [5].

We report the intercalation of highly oriented pyrolytic graphite (HOPG) with the hexafluorides ReF_6 and TcF_6 for the first time.

0379-6779/85/\$3.30

EXPERIMENTAL

Materials

The graphite used was HOPG in the form of blocks approximately 3 x 7 x 0.2 mm. Rhenium and technetium hexafluorides were prepared by fluorination of the metal powders - the former in the presence of excess metal, the latter with excess fluorine.

Sample preparation

Intercalated samples were obtained by exposing the HOPG to the MF₆ at room temperature. Reaction rates were controlled by maintaining the MF₆ reservoirs at suitably low temperatures. The intercalation of ReF₆ works best by immersing the HOPG in <u>liquid</u> ReF₆ (m.p. 18.5°C). Even then stage I is reached only after about three weeks. Appropriate precautions were taken with the radioactive TcF₆ ($T_{\frac{1}{2}}$ = 2 x 10 years). Stoichiometries were determined by weight uptake. Stages were characterized by (ool) diffractograms using Cu Ka radiation through Mylar covered samples. These were handled in an inert atmosphere Drilab.

Magnetic measurements

ESR measurements were carried out in the X band over the temperature range between 2K and 300K. Susceptibility measurements were performed on a superconducting quantum interference device (SQUID) down to 4K.

Electrical conductivity measurements

Basal plane electrical conductivities were measured by the contactless inductive rf technique [3]. The specific conductivity normalized per graphite plane was monitored continuously by a motor driven ferrite core and the sample in/out difference, ΔV , recorded as a function of time.

RESULTS AND DISCUSSION

Contrary to earlier reports, ReF₆ intercalates into HOPG, albeit extremely slowly. In this sense it resembles the intercalation of MoF₆ [5]. During the course of the intercalation the electrical conductivity increases smoothly reaching an asymptotic value of $\sigma/\sigma_{\rm g}$ = 6.5 at stage I ($\sigma_{\rm g}$ is the basal plane conductivity of pure HOPG). Stage I of HOPG/ReF₆ has a filled layer spacing of d = 8.35 Å; i.e. close to that of C₀MoF₆ which ranges between 8.35 - 8.45 Å. Magnetic susceptibility measurements on C₁₀ReF₆ (stage I) indicate a Curie law with an effective magnetic moment of μ = 1.25 BM. This moment is between that of neutral ReF₆ (μ = 0.25 BM) [6] and that of ReF₆ in the alkali hexafluororhenates (μ = 1.5 to 2.1 BM) [7]. No ESR signal associated with ReF₆ (5d configuration) could be observed down to T = 2K. This is not surprising as to the best of our knowledge no resonance associated with a localized spin d²

480

configuration has ever been observed in any metallic environment. The lower stage HOPG/ReF₆ compounds are unstable. In the absence of excess ReF₆, they deintercalate slowly reaching a stable stage IV compound (d = 18.33A) after about 16 hours.

The intercalation of technetium hexafluoride (TcF₆) into HOPG resembles that of OsF_6 . When HOPG is exposed to TcF_6 vapor (~ 10 torr), the conductivity rises rapidly, reaching a maximum (σ/σ_{σ} :7) at approximately stage II (d = 11.46 Å). Upon further exposure, stage I is reached (d = 8.12 Å) for which the conductivity ratio $\sigma/\sigma_{\alpha} \leq 1$. Changes in the c-axis thickness, t, confirm the values calculated from the X-ray diffraction: i.e. for stage I, the thickness ratio with respect to that of HOPG:t/t = 2.4 (the calculated value based on X-rays is 2.42); for stage II, t/t $_{\rm c}$ = 1.77 (calculated 1.71). The magnetic susceptibility of C10TcF6 (stage I) follows Curie behavior down to 4K with an effective magnetic moment $\mu \simeq 0.7$ BM. This falls between the moments of neutral TcF₆ (μ = 0.45 BM) [6] and those of TcF₆ in the alkali hexafluorotechnetates (μ = 2.25 to 2.51 BM) [8]. ESR studies of stage I and II HOPG/TcF₆ samples indicate clear ten-line hyperfine resolved spectra associated with ⁹⁹Tc nuclei (I = 9/2, 100% abundance) in the liquid helium temperature range. These spectra can be interpreted using a spin Hamiltonian with S = 1/2, g = 2 and isotropic hyperfine interaction. The large hyperfine interaction 99 A = 330±15 G is in agreement with previous estimates for ⁹⁹Tc in a d¹ configuration [9].

For the case of HOPG/ReF6, the magnetic properties are consistent with the oxidizing power of ReF_6 . Assuming that the effective magnetic moment of the intercalated ReF_6^- is similar to that in KReF_6 (i.e. 2.1 BM) and that the magnetic properties of ${\rm C}_{_{\rm P}}{\rm ReF}_6$ are due to the presence of both neutral ${\rm ReF}_6$ and charged ReF₆, we calculate the degree of charge transfer to be $x \simeq 0.35$. This incomplete charge transfer is correlated with the light blue color of the final product and the very long intercalation process with the relatively high final σ as has been observed with MoF_6 . The situation is more complicated in the case of TcF_6 . The known chemistry of TcF_6 [10] indicates that it falls between OsF_6 and IrF_6 in oxidizing power, but probably nearer the former (see Figs 1 and 2 for the electron affinities of the MF_6 compounds). Thus, the degree of charge transfer is expected to be about one charge per TcF_6 . Indeed, the dark blue color of the TcF₆/ HOPG, the relatively fast intercalation, and low final $\sigma,$ strongly support significant charge transfer as expected for the TcF_6 oxidizing power. However, the magnetic properties seem to be in conflict with such a conclusion. The relatively small (average) magnetic moment of HOPG/TcF6 seems to indicate that most of the intercalant species are in the form of TcF6 molecules. This is consistent with the ESR result, as the ESR spectra can be interpreted in terms of a 5d¹ (g=2, S= $\frac{1}{2}$) electronic configuration corresponding to neutral TcF₆. The magnetic properties of HOPG/TcF6 are not understood at the present time. However,

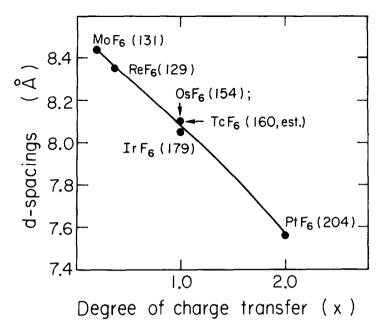


Fig. 1. C-axis d-spacings vs. Degree of Charge Transfer (x). Numbers in parentheses are estimated electron affinities of MF_6 . The value of PtF_6 is from $C_{12}PtF_6$ assuming the intercalated species is PtF_6^{-2} (reference 3).

the d-spacing of $C_{10}TcF_6$ is in consonance with the known oxidizing properties of TcF_6 .

The most striking feature of our experimental results is the existence of a correlation between the layer spacing and the charge transfer for the hexafluoride series (Fig. 1). The charge transfer was determined from the magnetic properties in the case of MoF₆, ReF₆, OsF₆, and PtF₆. For TcF₆ and IrF₆ the oxidizing properties suggest x = 1, and this is indicated in the figure. The plot shows that the layer spacing decreases smoothly with increasing charge transfer (or electron affinity). This can be understood by a simple classical model involving a balance between coulombic attractive and elastic repulsive interactions. The results in Fig. 1 provide evidence that the degree of charge transfer is directly reflected by the lattice spacing in the hexafluoride series The relationship between oxidizing powers and electron affinity (E.A.) of the transition metal hexafluorides has already been pointed out [11]. For the 5d series, the E.A. were estimated by interpolation between the measured value for WF₆ (104 kcal-mole⁻¹) and one calculated for PtF₆ from a Born-Haber cycle for O_2^2 PtF₆.

As seen from Fig. 2, the present work puts these values on a firmer basis. It moreover indicates that the E.A. given previously for IrF_6 is overestimated and/

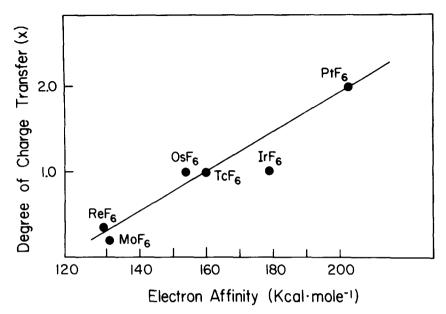


Fig. 2. Degree of Charge Transfer per $MF_6(x)$ vs. E.A.

or that IrF_6 is partially reduced to IrF_6^{-2} upon intercalation, and thus x > 1. The slightly shorter d-spacing for C_8IrF_6 supports this. Indeed preliminary magnetic susceptibility measurements on HOPG/IrF₆ show a slight Curie component superimposed on the large temperature independent paramagnetism reported earlier [3].

ACKNOWLEDGMENTS

We gratefully acknowledge the supply of HOPG from Dr. W.A. Moore of Union Carbide Co and financial support from the Volkswagen Foundation.

REFERENCES

- 1 J.H. Canterford and R. Colton, <u>Halides of the Transition Elements</u>, Wiley-Interscience, London, 1968.
- 2 N. Bartlett and B.W. McQuillan, in <u>Intercalation Chemistry</u>, Academic Press, 1982, p. 19.
- 3 N. Bartlett, E.M. McCarron, B.W. McQuillan and T.E. Thompson, Synth. Metals, 1 (1979/80) 221.
- 4 D. Vaknin, D. Davidov, H. Selig, V. Zevin, I. Felner and Y. Yeshurun, Phys. Rev., B 31 (1985) 3212.

- 5 D. Vaknin, D. Davidov, H. Selig and Y. Yeshurun (to be published).
- 6 H. Selig, F.A. Cafasso, D.N. Gruen and J.G. Malm, <u>J. Chem. Phys., 36</u> (1962) 3440.
- 7 G.B. Hargreaves and R.D. Peacock, J. Chem. Soc. (1958) 3776.
- 8 D. Hugill and R.D. Peacock, J. Chem. Soc. (1966)A, 1339.
- 9 J. Baldas, J.F. Boas, J. Bonnyman and G.A. Williams, <u>J. Chem. Soc. Dalton</u> (1984) 2395.
- 10 J.H. Holloway and H. Selig, Inorg. Nucl. Chem., 30 (1968) 473.
- 11 N. Bartlett, Angew. Chem. Int. Ed., 7 (1968) 433.

484