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ABSTRACT 
The low-temperature magnetization in a series of amorphous 

(Co,Ni, -p)75P16B6A13 alloys (0.34 < p  G0.5) deviates strongly from the Bloch T3I2 
law. These deviations are shown to result from short-wavelength excitations 
(‘fractons’) for which the random magnetic network looks fractal. 

Decades ago it was pointed out that well-defined spin waves are expected to 
propagate in disordered magnetic systems provided that their wavelength is long 
compared with the length scale of the disorder (Kittel 1959). Only recently has the 
cross-over between long-wavelength and short-wavelength excitations been treated 
(Alexander, Bernasconi, Schneider and Orbach 198 1, Alexander, Laermans, Orbach 
and Rosenberg 1983, Aharony, Alexander, Entin-Wohlman and Orbach 1985). It has 
been suggested that for short-wavelength excitations the random magnetic network 
looks fractal (Orbach 1986). This change in the dimensionality of the system implies a 
cross-over in the density of states (DOS) for the excitations from a spin-wave DOS in 
the long-wavelength regime to the so-called ‘fracton’ DOS for the short-wavelength 
excitations. It is the purpose of this paper to demonstrate experimentally the cross-over 
in the density of states of the magnetic excitations (Salamon and Yeshurun 1987). 

The magnetic system under investigation is amorphous (Co,Nil -p)75P16B6A13 
(Yeshurun, Rao, Salamon and Chen 198 1). In this system nickel is non-magnetic, and 
it serves to dilute the magnetic cobalt atoms. The dilution creates a percolating 
magnetic structure with the percolation threshold for ferromagnetism at p c  N 0.325. 
The main advantage in studying amorphous ferromagnets lies in the fact that p can be 
changed continuously, thus enabling a study of the magnetic excitation much closer to 
p c  than is achieved using other approaches (Uemura and Birgeneau 1986). 

In fig. 1 we show the magnetic phase diagram in zero field for 
(CopNi, - p)75P16B6A13. The circles in the figure denote the ferromagnetic transitions 
for the samples under investigation in this work. It should be noted that magnetic order 
(spin glass) is found for samples below p c .  This indicates that, owing to the relative 
long-range RKKY interactions which dominate the magnetic behaviour for p < p c ,  the 
spin-glass state has its own percolation threshold. A spin-glass phase also appears at 
low temperatures for the samples under investigation ( p  2 p J .  These are samples in the 
well-known ‘re-entrant’ ferromagnetic phase. To avoid complications arising from the 
spin-glass state, we analyse high-field data only. The field (H = 10 kOe) is well above 
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Fig. I 

The zero-field magnetic phase diagram for amorphous (Co,Ni, - p)75P16B6A13, based mainly on 
the results of Yeshurun et al. (1981). The full circles denote the ferromagnetic (FM) 
transitions for the sample under investigation. The dotted line is an extrapolation to the 
FM percolation threshold. The broken line is the re-entry line, which is ‘destroyed’ by the 
field, H = 10 kOe. 

the de Almeida-Thouless line for this sample, ensuring that the spin-glass phase is 
destroyed (Sompolinsky 198 1). 

The experimental approach in this work is based on the effect of magnetic 
excitations on low-temperature magnetization. Since each spin excitation reduces the 
magnetization of the ferromagnet by one Bohr magneton, the well known Bloch’s law, 

( 1 )  

follows from a Bose-Einstein integration of the spin-wave DOS for a d-dimensional 
system 

M( T)/M(O) = 1 - BT3’2, 

(2) 

Equation ( 1 )  has been confirmed experimentally on many crystalline and amorphous 
(Axe, Shirane, Mizoguchi and Yamauchi 1977) magnets. However, significant devi- 
ations from (1) are observed in dilute amorphous magnets (Bhagat, Spano, Chen and 
Rao 1980, Yeshurun et al. 1981). This is demonstrated in fig. 2 where we plot the 

cCO(d/2)-  1. 
sw 
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Fig. 2 
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Reduced magnetization against temperature to the power 3/2. Upward curvature is anomalous. 
The solid lines are fits to the data using the spin-fracton/magnon density of states. The 
broken line is the extrapolation of the initial slope for p=O.34. H = 10 kOe. 

normalized magnetization M(T)/M(O) for amorphous (Co,Ni, - p)75P16B6A13 
(0.34<p<0.50) as a function of T3/’.  The dashed line in fig. 2 is the extrapolation of 
the initial shape of M (  T)/M(O) for one of the’ samples (y = 0.34). This line represents 
the behaviour expected from (1). The upward curvatures which characterize the 
deviations from the expected straight lines eliminate the possibility that these 
deviations are due to contributions from hight order ( T S i z , .  . .) terms; these contri- 
butions should cause downward curvatures. We thus conclude that deviations from the 
Bloch law (1) signal changes in the spin waves DOS (2). Following the fractal approach 
(Alexander et ai. 1981, 1983, Aharony et al. 1985, Orbach 1986), for ‘fracton 
dimensionality’ 2, the DOS is 

- - 
, (3) KOld/2)-  1 

f r  

where ti= 2d42 + 8)7, and 8 is the ‘diffusion exponent’, i.e. the diffusion constant 
decreases with distance as r-O (Ben-Avraham and Havlin 1982, Gefen, Aharony and 
Alexander 1983). The cross-over between (2) and (3) occurs at 

0, CC ti(’ +@’, (4) 

where tp= t , , [ (p -pJ(  1 -p , ) ] - ’  is the percolation correlation length. 
In order to include possible fraction contributions to the temperature dependence 

of the magnetization, we introduce an effective DOS (Bhagat et al. 1980) which 

?This expression holds when a contribution from finite clusters is included in the calculations 
(Alexander et al. 1983). 
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Fig. 3 
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Effective spin-wave stiffness D ( p )  and magnon/fracton cross-over frequency w,(p) against 
reduced concentration. The critical concentrationp, is taken to be 0.325. The solid square 
is the pure limit value from the normal Bloch law. 

interpolates between (2) and (3): 

neffccD(p)3’2m(d’2)- I( 1 + o / o y - d ) ’ Z ,  ( 5 )  

D(P)K (6) 

where the stiffness constant 

For the pure limit, w>>wc, the spin-wave DOS is recovered. At the other extreme 
(w >> w,), neff approaches the fraction DOS with a coefficient that is independent of r,. 
The magnetization is calculated by numerically integrating over the effective density of 
states: 

We use (7) to fit the experimental data by treating D(p),  a,@), o , (p )  and 6, which 
appear implicitly in the expression for neffr as adjustable parameters. Correlations 
between 6 and the other two parameters prevent a simultaneous determination of all 
three. We fix 0 and search for self-consistency in the value of 9 deduced independently 
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from (4) and (6).  Consistency can be achieved only by fixing the exponent in the range 
O =  1.5 kO.1. The theoretical value of 8 ranges from 1.3 at short times (ultra-short 
wavelengths) to the asymptotic value of 1.7 (Havlin and Ben Avraham 1982). Our 
experimental value is thus an effective one, owing to averaging of the various 
contributions. 

Values of D ( p )  and o , ( p )  obtained from the fits in fig. 2 are plotted against 
reduced concentration in fig. 3. The data are well represented by D(p)a (p -p , )"  and 
w , ( p ) ~ ( p - p ~ ) ( ~ + ~ ) ~  with dv=  1.3 f0.8 and (2+O)v=3.0_+0.1. These values yield 
v = 0.85 0.07 and O = 1.5 f 0.1, both of which are consistent with theory for three- 
dimensional site percolation and with our assumed value of 8. 

Recently, Uemura and Birgeneau (1986) used high-resolution neutron scattering 
from the random antiferromagnet (Mn,. ,Zn,. s)F2 to demonstrate a cross-over from 
well defined low-energy spin waves to quasi-localized excitations at high energies. 
Though this specific sample is relatively far from the percolation threshold, the results 
of their experiment serve as direct qualitative evidence for the predicted cross-over 
phenomena. Our experimental results for the diluted amorphous magnets Co,Ni, -, 
with p 2 p c  are in good quantitative agreement with the conjecture of fractons in 
percolation networks. We thus conclude that the accumulated experimental evidence 
lends support to the existence of fractons in percolating magnets. 
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