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ABSTRACT 
An experimental study of irreversible phencJInena iii alnurphous YeMir i J  

reported. Irreversibility is characterized by the existence of both non-eyuilibriwn 
susceptibility and magnetic viscosity. Both disappear ahove a critical line Z ' c ( H )  
which is identified &s the tle Almeitla-'L'houla.rs line for spin gleases. T , ( H )  is, 
wibhin wperimental resolution, indapendtrnt of time-scale in the range 30-700 s 
and has the form TXM, where I arid h are the retlucetl temperature and the reduced 
field respectively, 4=0.75+0.15  and the field prefactor is - 15. These results are 
discussed within the framework of recent mean-field models for spin glasses. 

9 1. INTROUUCT~ON 
The two main characteristic properties of spin glasses are the sharp cusp 

in the zero-field a.c. susceptibility at the freezing teniperature T, and the onset 
of irreversible phenomena below this temperature. The observation of the 
cusp (Cannella and Mydosh 1972) rriotivatecl Edwards and Anderson (1975, 
hereafter referred to as EA) to develop a theory which considers the spin-glass 
transition as a collective process. Models of the EA type, such as the 
Sherrington-Kirkpatrick (1975. hereafter referred to as SK) mean-field solution, 
indeed procluce a cusp in the susceptibility. In the EA theory the spin-glass 
order parameter qE vanishes a t  T, in zero magnetic field only. In the presence 
of a field, qE., has a non-zero value at any finite temperature arid a spin-glass 
transition cannot occur. Some experimental support for this ' polarization ' 

of the spirt-glass order parameter has been found in the strong smearing of the 
cusp in a rather small niagnetic field. This has giver1 rise to a general belief 
that the spin-glass transition is destroyed in the presence of a magnetic field. 
That this is not the case was first, shown by de Alnieicla and Thouless (1978, 
hereafter referred to as AT) who calculated, iii the framework of the SK nioclel 
for Ising spin glasses, a line T,(H)  which has been shown to be a line of 
spin-glass-paramagnetic transitions in the field-temperature ( H - T )  phase 
diagram (Parisi 1979, Gabay und Toulouse 198 1, Sonipolinsky 198 I ) .  The 
equation of this line in the vicinity of T, = T, (0) is given by 

T = Ah21", (1 )  

where T =  1 - T c ( H ) / T f  and h - ypBHlk ,T ,  itre the reduced temperature and the 
reduced field respectively. g being the gyroniagnetic ratio. p,{ the Bohr magnet.on 
and k ,  is the Boltzmann constant. The field coefficient d is of the order of 1. 

Sompolinsky ( 198 l ) ,  using a dynamic approach, has explicitly incorporated 
the slow irreversible relaxation processes as a central feature of the spin-glass 
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286 Y. Yeshurun 

transition. The theory describes the spin-glass phase by order parameters 
which relax with a broad distribution of relaxation times. In  the finite-time 
limit the non-equilibrium susceptibility obeys, in zero field, the Fischer relation 

%,= (“/T)(1 -kJ’ (2)  

where C is the Curie constant. Another order parameter is the irreversible 
response A defined b,v the difference between Xnr and the true equilibrium 
susceptibility X,,. 

x,= Xnc f (GAIT). (3)  

The use of A as an order parameter is particularly useful if a finite field is 
present : qF: is then noii-zero. even a t  high temperatures. but A appears onlx 
below a field-dependent critical temperature T, (H) .  The loci of these critical 
teinperat’ures define a line in the N-T phase diagram which coincides with the 
AT line (eqn. ( I ) ) .  

The AT calculations for Ising spin glasses were extended to  m-component 
spins by Gabay and Toulouse ( I  98 1, hereafter referred to  as GT).  For Heisen- 
berg spin glasses the equation of the transition line. the GT line. is gii-en by 

T=J‘hZ ,  (1) 

where A ’  = 7/20. For tJhih model system the transition at T , ( H )  is signalled by 
freezing of the spin cornponeritjs which are transverse with respect t o  the applied 
field. This in turn gives rise to  an irreversible response in both the transverse 
and t,he longitudinal susceptibilities, the latter being relatively weak in the 
vicinity of T,. The AT line defined by eqn. (1)  is, in this model spsteni, a 
cross-over line from weak to  strong (longitudinal) irreversibility. 

Thus, from the theoretical point of view, the existence of a spin-glass 
transition line in the H-T plane is well established and its physical meaning is 
well understood. The purpose in the present article is to  examine the results of 
a systematic experimental study of the H-T phase cliagram. We focus on the 
amorphous FeMn spin-glass system (Yeshurun. Ketelsen and Salanion 1982. 
Yeshurun and Soinpolinsky 1982). but also discuss results for crystalline FeCr 
(Palumbo, Parks and Yeshurun 19SZ). The experimental criterion which is 
used here to  identify the spin-glass transition is the disappearance of irreversible 
processes. We describe two different kinds of experiment based on this 
criterion 

( 1 )  branch point measurements for identifying the critical temperature 
T,(H)  above which the two branches of the susceptibility, A‘,> and Xnr ,  
coincide at a given field, and 

(2) magnetic viscosity measurenients for identifying the highest field H,( T )  
below which relaxation phenomena. are still observed at rz given tem- 
perat m‘e. 

In  the following sevtions we describe in detail the two experimental pro- 
cedures and  compare the results. 11-e conclude that both esperirnents yield one 
well-defined transition line, independent of the experimental time-scale 
(30-700 s). This line of transitions is identified as the AT line (eqn. (1)). 
Finallj-, we discuss the results and sketch the present experimental status of the 
H-T phase diagram for spin glasses. 
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Criticnl Eine for irreversibility in spin glasses 287 

3 2. EXPXRIMENTAL 
This section is devoted mainly to a det,ailed description of the two experi- 

ment8al procedures, branch point and magnetic relaxation measurements. We 
exhibit results for amorphous (Fe,.,,Mn,.,,),,P,,B,Al, which have been previously 
reported (Yeshurun and Sompolinsky 1982, Teshurun e f  al.  1982). Our main 
interest here is to compare the results obtained using the two procedures. 

2 . 1 .  Snmnple preparation 
Ribbons of the amorphous samples were prepared by centrifugal spin 

quenching (Chen and Miller 1976). Small chips (5  x 1 x 0.5 mm) were cut from 
the ribbons, stacked in parallel and introduced into a vibrating sample magneto- 
meter with the longest axis parallel to the applied magnetic field. 

2 . 2 .  Susceptibility branxh point measurements 
First, the sample 

was zero-field cooled (ZFC) to 4 * 2 K ,  a field H was applied and the ZFC 
magnetization curve MI was measured up to -80 K.  Then, without changing 
the field, the field-cooled (FC) magnetization M ,  was recorded down to 4.2 K. 
At this temperature the field was increased by AH and magnetization curves 
were recorded while sweeping the temperature up (H3)  and down (M4). This 
procedure is demonstrated in fig. 1 for H = 600 Oe and AH = 100 Oe. 

Susceptibility was measured using a four-step procedure. 

From eqn. (3) the order parameter A is given by 

A = (T/C)( x, - Xne). 

A', = ( J f 4  - J f  z ) / A H ,  (6  a )  

Xn,= (M3-Ji! , ) /AH. (6 b )  

( 5 )  

For a cooling field H and a step A H ,  

The order parameter A is therefore proportional to A M = n f , - N 3 .  The inset 
in fig. 1 exhibits the temperature dependence of A M .  As can be seen from 
fig. 1, A M  (and therefore A, too) increases continuously from zero. We show 
this by the solid line in the inset, which is the result of a non-linear least- 
squares fit of the difference, 

A ( H )  =ill, - M 3  = A? + B?', ( 7 )  

where ?= 1 - T/T,(H). The branch point T,(H) is thus one of the fitting para- 
meters in eqn. (7 ) .  

For H = 0 we take 
H = 8  Oe (the lowest field in this experiment). Now x', and Xne are simply 
the F C  and the ZFC low-field susceptibilities. The critical temperature 
T,(O)= T, is identified as the location of the maxiinurn of Xne (41-6 K). The 
order parameter A is extracted with the help of eqn. ( 5 ) ,  while the EA order 
parameter is deduced from the Fischer relation, eqn. (2). The temperature 
dependence of qEa and of A for H = O  is shown in fig. 2 ; the inset shows a 
log-log plot of these order parameters in the vicinity of T,.  We find for H = 0 
that 

(8 a )  

A ( H = O ) X [ ~ - ( T / T , ) ] ~ ' ,  pl=2*0*0.2.  (8 b )  

The procedure for a zero-field run is a little simpler. 

qh2:a a [ I - (T/T, ) ]a ,  ,!3 = 1.25 k 0.25, 
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Magnetization field branches for amorp1wu.s ( Fe, ~ ~ ~ I i i ~ . ~ ~ ) , ~ ~ ~ ~ ~ ~ ~ l ~ .  Curve (u) : 
zero-field-cooled magnetization, H =  600 Oe : curve ( 6 )  : field-cooled- 
magnetization, H=600 Oe : curve (c )  magnetization measured in field of 
H = 700 Oe after cooling in field of 600 Oe ; curve ( d )  magnetization measurtd 
while cooling in field of H=500 Oe. The inset shows the temperature depsn- 
dence of A N ,  

Xote tha t  the result (8 b )  is consistent with eqn. ( 7 )  provided A ( H = 0 ) = 0 .  
The exponents /3 and /3', as well as  the trend of d ( H )  in eqn. ( 7 ) .  are in good 
agreement with the preclict,ions of t,he dynamic niodel (Soinpolinsky 1981). 

2.3. Naynetic viscosity measurements 
Three different procedures were used. 

(1) The sample was cooled in zero field from T 'v 60 K > T ,  t o  the desired 
temperature T. The field was then increased abruptly t o  a value H ,  
and changes in the magnetization recorded for approximately 12 min. 

( 2 )  The field of step (1) was kept constant until quasi-equilibrium (defined 
by a constant reading of magnetization over a period of several minutes) 
way achieved. The field was then turned off and the relaxation 
recorded for 12  min. 
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The spin-glass order parameters qEa and A for H=O. The inset shows a log-log 
- plot of these parameters in the vicinity of T,. 
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290 Y. Yeshurun 

(3) After cooling in a field from T N 60 K to T < T,, the field H was turned 
off and the relaxation of the thermo-remanent magnetization (TRM) 
from equilibrium state was recorded for approximately 12 min. 

I n  all cases we find that the changes in the magnetization can be fitted to the 
equation 

(9) 

in the range t ,  = 1 min to  t ,  = 12 min. 
The results obtained by following the first procedure (ZFC and application 

of a constant field) can be summarized as follows. First, for a constant tem- 
perature, S increases with field, peaks at H,(T) then decreases and vanishes 
a t  H J T )  (the circles in fig. 3 represent typical results). The amplitude of the 
peak S ,  and its position H,(T) decrease with increasing temperature. We 
observe a parabolic dependence of S on H for most of the field interval, which 
enables extrapolation to  S= 0 with quite reasonable accuracy. Note, however, 
that the parabolic dependence fails a t  high fields, above H=H, ,  where the 
coefficient S levels off to a certain fraction of S ,  and then decreases slowly to 
zero. The high-field part of S ( H )  is extrapolated to S=O by fitting the data 
to a power law, Scc(l= HIH,)”. We find the exponent Y to vary between 
1 and 1.5, whereas H,(T) is determined to within an accuracy of, typically, 
20%. Second, for a constant field S increases with temperature, peaks a t  
T,(H) and then decreases and vanishes at T,(H). The magnitude of the peak 
S, increases and its location T ,  decreases with increasing field. The lines 
described by T,(H) and T,(H)  coincide, within experimental error, with the 
H,( T) and H,( 9”) lines defined above. 

iW(t) =MI + S In t ,  

0 .08  

0 0 6  - - 
I 
0 2 0.04 
E 
w 
cn 0.02 
v 

0 00 

Fig. 3 

> 

0 I000 2000 3000 4000 

H ( O e )  

The field dependence of the relaxation rate S (0) after a ZFC process to 19 K and 
(From application of field H ,  and (A) for thermo-remanent magnetization. 

Yeshurun, Ketelsen and Salamon 1982.) 

The results obtained via procedures (1) and ( 2 )  are quite different. The 
triangles in fig. 3 represent results for TRM decay a t  19 K, in comparison with 
the in-field relaxation. Similar S ( H )  is now roughly constant a t  high fields. 
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Critical line for irreversibility in spin glasses 291 

results are obtained when procedure (2) is used. Unfortunately, the tem- 
perature TP1 which defines the starting point of the plateau in S ( H )  is experi- 
mentally ill-defined. Therefore, in the following discussions we restrict 
ourselves to  results obtained using procedure ( 1). Qualitative interpretation 
of the plateau has been discussed previously (Yeshurun et al. 1982). 

2.4. H-T phase diagram 
The results for TJH) obtained via eqn. (7) and the results for He( T) obtained 

via extrapolation of S ( H )  to  zero are summarized in fig. 4 in a H-T phase 
diagram. The circles represent the results of branch point measurements 
and the triangles the'results of viscosity measurements. The smooth solid line 
connecting the experimental points is the best fit to a power law t= FM, 
where T and h are reduced temperature and field respectively, and T,(O)= 
TI= 41.6 K. We find that (b=0.75+0-15, in good agreement with the AT 
prediction for Ising spin glasses (eqn. (1 ) ) .  The experimental field coefficient 
F is, however, bigger by a factor of -15 than the predicted prefactor A 
(eqn. (1)). I n  other words, a t  a given low temperature, irreversibility is 
prevented by a field smaller than the one predict&$ 

J 3. DISCUSSION 
The H-T phase diagram for various spin-glass systems has been explored by 

several experimental groups by measuring d.c. susceptibility (Monod and 
Bouchiat 1982, Chamberlin, Hardiman, Turkevich and Orbach 1982, Yeshurun 
and Sompolinsky 1982, Malozeriioff, Barnes and Barbara 1983), a.c. suscepti- 
bility (Salamon and Tholence 1983), Faraday rotation (Kett, Gebhardt, Krey 
and Furdyna 1981, Bontemps, Rajchenbach and Orbach 1983), magnetic 
relaxation (Yeshurun et al. 1982, Tholence and Salamon 1983, Palumbo et al. 
1982), the magnetocaloric effect (Berton, Chaussy, Odin, Rammal and Tournier 
1982) and magnetic torque (Campbell, Arvanitis and Fert 1983). This impres- 
sive list allows one to draw some ' universal ' conclusions. There is fairly 
general agreement about the qualitative shape of the experimental AT line. 
In  particular, the critical exponent in these experiments agrees well with the 
predicted value, 3. The experimental field coefficient, however, ranges from 
the order of unity to -25. This range of values might be attributed either to 
different experimental criteria for the transition or to specific properties of the 
spin-glass system (clustering effects, spin of magnetic species, effective magnetic 
moment and Curie-Weiss temperature) which are not usually taken into account 
in calculating the field scale. Recently there have been some indications that 
the field scale depends, in the same sample, on the time-scale of the experiment 
(Salamon and Tholence 1983, Bontemps et al. 1983, Young 1983, Kinzel and 
Binder 1983). One expects, therefore, some deviation of the branch point line 
(represented by the circles in fig. 4 ;  the time-scale is about 30 s) from the 
viscosity line (represented by the triangles ; the time-scale is about 700 s). 
This is not observed in the present experiment. Both approaches yield one 
transition line, independently, within experimental resolution, of the time-scale. 
We ncte, however, that in order to determine total vanishing of irreversibility 
we have used a different ext,rapolation procedure in each experiment. This 
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292 Y. Yeshurun 

Fig. 4 

PM 

T ( K )  

Field-temperature phase diagram for (Fe,.,,bfn,.,,),,P,,B,AI,, showing the results of 
(0) branch point measurements and (A) viscosity measurements. 

might lead to a systematic error in the results and affect the field coefficient 
(but not the exponent). 

A proper extrapolation procedure is indeed crucial for these kinds of experi- 
ment. Usually the extrapolation procedure introduces large errors in the 
experimental critical points. This problem can be drastically reduced by using 
the scaling properties of the experimental data (Salamon and Tholence 1983). 
We demonstrate this for magnetic relaxation data for a polycrystalline 
Feo.MCro.l, spin-glass system (Palumbo et aE. 1982). Relaxation data were 
recorded using procedure ( 1 )  ( 9  2.3). The slow relaxation was fitted to a 
power law 

M = iWota (10) 

as well as to a logarithmic function (eqn. (9)). In all the relaxation experiments 
it was found that a < 1, and therefore it is difficult to distinguish experimentally 
between a power law and logarithmic behaviour. We note, however, that by 
taking derivatives with respect to In t for both eqns. (9) and (lo), and provided 
a < 1, one finds that 

a N S/Mo. (11)  

Figure 5 shows the exponent a ( H )  of eqn. (10) for five isotherms. An interesting 
feature of the a ( H ,  T) data is the weak temperature dependence of the relaxation 
rate at the maximum. This simple behaviour enables all data points to be 
collapsed into a single curve with a scaling field parameter H,(T),  where H ,  
is the field for which a ( H )  has a maximum. This scaling procedure is shown in 
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The exponent a(H)  in eqn. (10) for five isotherms. (From Palumbo, Parks and 
Yeshurun 1982.) 
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The data from fig. 5 scaled to a single curve. 
field for which a(H)  is the maximum. 

The scaling parameter N,(T)  is the 
(From Palumbo, Parks and Yeshurun 1982.) 
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294 Y. Yeshurun 

fig. 6. Owing to the scaling property of the data, it is clear that H , ( T ) ,  the 
critical field for the vanishing of viscosity data, is proportional to Hnl( 7'). 
The maxima H,( T) can, of course, be determined much more accurately than the 
critical fields H,(T) .  The procedure therefore yields better estimates of the 
critical exponent and the qualitative shape of the critical line, but with the 
penalty of an undetermined prefactor. 

We turn now to one of the most intriguing questions in the present subject. 
This is the apparent absence of the GT line (eqn. (4)), in most experimental 
results. For isotropic samples this line marks the freezing of transverse spin 
components. Some evidence for such freezing is indeed found in Mossbauer 
experiments (see, for example, Campbell, Senoussi, Varret, Teillet and Hamzic 
1983). This transverse freezing is expected to induce weak longitudinal 
irreversible response. At the AT line (eqn. (1)) a cross-over to strong irreversible 
response is expected (Cragg and Sherrington 1982, Kotliar and Sompolinsky 
1984). The absence of the GT line here and for other isotropic spin-glass 
systems has been attributed to either insensitivity of the experimental apparatus 
to the weak longitudinal irreversibility (Cragg and Sherrington 1982) or to local 
random anisotropies which lead to  an Ising behaviour (Kotliar and Sompolinsky 
1984, Sompolinsky 1984). The first approach interprets the experimental AT 
line as a cross-over line, whereas the second approach views it as a true critical 
line in the presence of a field. I n  any case, there is general agreement that the 
AT prediction has found solid experimental evidence. 
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