A THEORY OF THE ELECTRIC FIELD GRADIENT IN KH₂PO₄-TYPE CRYSTALS, BASED ON THE PROTONIC E-MODE

S. HAVLIN and Y. YESHURUN

Department of Physics, Bar-Ilan University, Ramat-Gan, Israel

(Received September 22, 1975)

The temperature dependence of the Electric Field Gradient in KH_2PO_4 -type crystals is explained in terms of the *E*-mode fluctuations. Calculations based on the *q*-dependence of this mode alone lead to good agreement with the experimental data.

In recent years systematic measurements of the Electric Field Gradients (EFG), V_{zz} , have been performed for KDP-type ferroelectrics. Those measurements have been an important tool used to understand the nature of the ferroelectric transition. Blinc, *et al.*¹ measured V_{zz} at the As-site for KH₂ AsO₄, CsH₂ AsO₄, RbH₂ AsO₄ and the appropriate deuterated crystals. Their experimental data in the paraelectric phase is well described¹ by the formula

$$V_{zz} = AT(T - \alpha T_c)^{-1} \tag{1}$$

where α is an experimentally determined constant characteristic of a given ferroelectric and ranges typically between 0.2 to 0.45. An important step forward in explaining these results was made by Blinc, *et al.*¹ who related V_{zz} to the ferroelectric B_2 -mode.

According to the equation $V_{zz} = C \langle \xi^2 \rangle$, where ξ is the normal coordinate describing the B_2 -mode. In addition, they calculated V_{zz} directly, within the Slater model, and obtained an expression of the form Eq. (1), but with a constant $\alpha = 0.45$ for all KDP-type ferroelectrics. Further, the model of Blinc, *et al.*¹ does not explain the increase in α upon dueteration.

Scott and Worlock² considered the effect of modes other than q = 0 on V_{zz} and concluded that inclusion of these modes improves the agreement between theory and experiment.

In this note we consider the contribution to V_{zz} of fluctuations from the protonic *E*-mode symmetry, hitherto neglected in theoretical considerations. By incorporating the protonic *E*-mode contribution we find that our theoretical expression for V_{zz} (i) is in very good agreement with experiment; (ii) leads to an increase of α with deuteration, in agreement with experiment; (iii) explains qualitatively why the temperature dependence of V_{zz} measured³ at the Cs site in $CsH_2 AsO_4$ is insignificant as compared to that measured at the As site.

Including the *E*-mode contribution we can write V_{zz} in a more general form

$$V_{zz} = C_B \langle \xi_B^2 \rangle + C_E \langle \xi_E^2 \rangle. \tag{2}$$

Following Scott and Worlock's procedure for evaluating $\langle \xi_B^2 \rangle$, we calculate $\langle \xi_E^2 \rangle$ in terms of the *E*-mode contribution by taking into account all the *q* wave vector values. For the regime $\beta \Gamma \ll 1$, and $T > T_c$ the *E*-mode eigenfrequency is given by⁴

$$\omega_E^2(\mathbf{q}, T) = 4\Gamma^2 \left[T + \gamma J(\mathbf{q})\right]/T \tag{3}$$

where Γ is the proton tunneling integral, $J(\mathbf{q})$ is the proton-proton interaction, and $\gamma = (\frac{1}{3})(2U_2/U_1 - 1)$, where U_1 and U_2 describe the interactions between nearest neighbour protons in the same and different xy-planes, respectively.

The central point of this paper is that the most important contribution of the *E*-mode fluctuation arises from the vicinity of the Brillouin zone boundary at $q = \pi/d$. This is to be contrasted to the dominant contribution arising from $q \approx 0$ for the B_2 -mode.

By taking into account the dominant contribution associated with $q = \pi/d$ we obtain

$$V_{zz} = \frac{C_E T}{T - \gamma T_c} \tag{4}$$

Assuming $U_1 = U_2$ gives $\gamma = \frac{1}{3}$. Even this simple assumption already gives a value of γ reasonably close to experimental¹ values $0.2 < \alpha < 0.45$. We can determine γ from the experimental data for χ_x using the relation $\chi_x \propto (T + \gamma T_c)^{-1}$. The available susceptibility data for CDA⁵ and KDA⁶ are shown in Figure 1. Using the determined values for γ and

FIGURE 1 (a) and (b) describe V_{zz}^{-1} and $(x_{a}T)^{-1}$ for CsH₂AsO₄. The points refer to the experimental data.^{1,5,6} The solid lines are the predictions of the theory, calculated from Eq. (4) and Eq. (5). (c) and (d) describe the same quantities as above for KH₂AsO₄.

calculating numerically $\langle \xi_E^2 \rangle$ for all q wave vector values, leads to excellent agreement between our theory and the experimental data for V_{zz} , as shown in Figure 1.

It will be noted that in the above we have completely ignored the contribution of the B_2 -mode to V_{zz} . This can be understood from the fact that C_B and C_E in Eq. (2) depend upon the inverse cube of the distances of the Cs ions and the protons from the As-probe. Because of the proximity and the nonionic nature of the chemical bond of the proton to the As (as compared to the large Cs-As distance) it follows that $C_B \ll C_E$. It should also be noted that for KDA it is known experimentally⁷ that $\chi_x > \chi_z$ in the major portion of the temperature range of interest here.

The idea that the major contribution to V_{zz} at the As site comes from the proton fluctuations associated with the *E*-mode, also can explain the temperature-independence of V_{zz} measured at Cs site in CsH₂ AsO₄.³ If the B_2 -mode makes the larger contribution to V_{zz} one would expect similar temperature dependence at As and Cs sites due to their relative fluctuations. In our model, the major contribution arises from the *E*-mode which introduces asymmetry between the Cs and As ions due to the relative proximity of the protons to the As.

As seen from experiment¹ the effect of deuteration is to increase the value of α in Eq. (1). This can be qualitatively understood by extending the theoretical expression

$$V_{zz} = C_E \frac{T\Gamma (\tanh \beta \Gamma)}{\Gamma - \gamma J_0 (\tanh \beta \Gamma)}$$

(which is the contribution of $q = \pi/d$ to V_{zz}) from above T_c , to where it intersects the temperature axis. In this way one obtains for $\beta_c \Gamma < 1$

$$\alpha \approx \gamma - \frac{2}{3} (1 - \gamma) (\beta_c \Gamma)^2.$$
⁽⁵⁾

However, since $\beta_c \Gamma$ decreases with deuteration and $\gamma < 1$, it follows that α increases with deuteration.

ACKNOWLEDGEMENTS

We wish to acknowledge many helpful discussions with Professor M. Klein. We also wish to express our thanks to Professor M. Luban for a critical reading of the manuscript and to Dr. E. Litov and H. Sompolinsky, for several valuable comments.

REFERENCES

- R. Blinc and J. L. Bjorkstam, *Phys. Rev. Lett.* 23, 788 (1969); R. Blinc, M. Mali, J. Pirs and S. Zumer, *J. Chem. Phys.* 58, 2262 (1973).
- J. F. Scott and J. M. Worlock, Solid State Comm. 12, 67 (1973).
- 3. R. Blinc and M. Mali, Solid State Comm. 7, 1413 (1969).
- 4. S. Havlin, E. Litov and H. Sompolinsky, *Phys. Lett.* 53A, 41 (1975).
- 5. R. J. Pollina and C. W. Garland, *Phys. Rev.* (to be published).
- 6. G. Busch, Helv. Phys. Acta 11, 269 (1938); S. Havlin,
- E. Litov and G. A. Uehling, *Phys. Rev.* B9, 1024 (1974). 7. I. P. Kaminow, *Phys. Rev.* 138, A1539 (1965).
- 7. 1. F. Kallinow, Phys. Rev. 156, A1559 (1965).