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A superconducting La1.84Sr0.16CuO4 film patterned into a network of 100�100 nm2 noninteracting square
loops exhibits large magnetoresistance oscillations superimposed on a background which increases monotoni-
cally with the applied magnetic field. Neither the oscillations amplitude nor its temperature dependence can be
explained by the Little-Parks effect. Conversely, a good quantitative agreement is obtained with a recently
proposed model ascribing the oscillations to the interaction between thermally excited moving vortices and the
oscillating persistent currents induced in the loops. Extension of this model, allowing for direct interaction of
the vortices and antivortices magnetic moment with the applied field, accounts quantitatively for the monotonic
background as well. Analysis of the background indicates that in the patterned film both vortices and antivor-
tices are present at comparable densities. This finding is consistent with the occurrence of Berezinskii-
Kosterlitz-Thouless transition in La1.84Sr0.16CuO4 films.
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I. INTRODUCTION

Quantization of the fluxoid in multiply connected super-
conductors was first predicted by Fritz London in the early
days of superconductivity.1 This prediction was later con-
firmed experimentally by Little and Parks2–4 who demon-
strated that a thin-walled superconducting cylinder pierced
by a magnetic flux shows magnetoresistance oscillations
with the period equal to the superconducting flux quantum
�0=h /2e. The explanation provided by Little and Parks was
that the resistance oscillations �R�H� reflect periodic
changes in the superconducting transition temperature Tc
given by �Tc=�R�H��dT /dR�. Subsequent studies have
demonstrated periodic changes in the magnetoresistance also
in two-dimensional �2D� networks of superconducting wires
�see Refs. 5 and 6, and references therein�. These studies
were focused on determining the arrangements of vortices in
the network and the effects of size and symmetry of the
network on the periodic oscillations.

Magnetoresistance oscillations in a high-Tc superconduct-
ing network were first reported by Gammel et al.,7 who as-
cribed them to the Little-Parks effect. However, the ampli-
tude of the oscillations and its temperature dependence could
not be accounted for while no attempt was made to analyze
the monotonic background on which the magnetoresistance
oscillations were superimposed.

We have recently demonstrated8 large magnetoresistance
oscillations in a network of decoupled 150�150 nm2

La1.84Sr0.16CuO4 loops and showed that the oscillations am-
plitude is much larger than what one would expect from the
periodic changes in the critical temperature associated with
the Little-Parks effect. We ascribed these oscillations to a
dynamic effect: thermally excited vortices move and interact
with the persistent current induced in the loops by the mag-
netic field. As the induced current oscillates periodically with
the magnetic flux piercing the loops, due to fluxoid quanti-
zation, this interaction is periodic with the applied magnetic
field; this gives rise to the magnetoresistance oscillations.

This effect is especially important in high-Tc superconduct-
ors, where the Little-Parks effect is suppressed because of
the relatively small coherence length, while the vortex dy-
namics is enhanced due to relatively large thermal fluctua-
tions. As the size of the loops decreases down to the nano-
scale, the dynamic effect becomes even more significant,
because of an increase in the persistent current induced in the
loops. We have also outlined a theoretical analysis8 based on
the fluxoid dynamics model,9,10 that successfully accounts
for the amplitude of the observed magnetoresistance oscilla-
tions and its temperature dependence.

In this paper we present data on smaller La1.84Sr0.16CuO4
loops of size 100�100 nm2, almost an order of magnitude
smaller than what has been reported previously for other
high-Tc materials. In addition, we extend our theoretical
analysis to include description of the monotonic background
on which the magnetoresistance oscillations are superim-
posed. The analysis of the magnetoresistance background
provides evidence for the presence of both vortices and an-
tivortices in La1.84Sr0.16CuO4 films at elevated temperatures.
This is consistent with thermal generation of vortex-
antivortex pairs that dissociate above a certain temperature,
the so-called Berezinskii-Kosterlitz-Thouless �BKT� transi-
tion point.11 The occurrence of a BKT transition has been
predicted in thin high-Tc superconducting films with the lat-
eral dimensions smaller than the perpendicular penetration
depth.12 However, the experimental efforts to observe such a
phase transition in superconductors have so far yielded in-
conclusive results.

II. EXPERIMENTAL

An advanced molecular-beam epitaxy system was em-
ployed to synthesize optimally doped La1.84Sr0.16CuO4 films,
26 nm thick, epitaxially on LaSrAlO4 substrates polished
perpendicular to the �001� direction.13,14 The films were char-
acterized in situ by reflection high-energy electron diffrac-
tion, and ex situ by x-ray diffraction, atomic force micros-
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copy and mutual inductance measurements. Subsequently,
the films were patterned into a 30�30 �m2 network con-
sisting of 100�100 nm2 square loops with �25 nm wire
width, separated by 500�500 nm2 loops, as shown sche-
matically in Fig. 1. We note that the size of the loops and the
wire width in the present experiment are nearly an order of
magnitude smaller than previously studied in high-Tc net-
works and rings.7,15–19 In this specially designed network the
small loops do not share sides, thus eliminating complica-
tions that may arise in simple networks �e.g., a square net-
work�, such as vortex interaction and frustration or intersti-
tial vortices trapped in the wires.5–7,15–18 Simulations20 show
that the decoupling of the small loops improves as the ratio
between the sides of the large and the small loops increases.
In the present network we achieved a ratio of 5:1 as com-
pared to about 3:1 in our previous published work.8 In such a
network, the behavior of the small loops approximates that
of an ensemble of isolated loops, thus reflecting the behavior
of a single loop. Nevertheless, this decoupled network has an
advantage over a single loop as it allows application of larger
currents, thus improving the signal-to-noise ratio. In addi-
tion, measurements on large number of loops in the network
average effects of inhomogeneities and size distribution.

The network pattern of Fig. 1 was created using a
CRESTEC Cable-9000C high resolution e-beam lithography
system in a layer of poly�methyl methacrylate� �PMMA� re-
sist spun-off on top of a superconducting La1.84Sr0.16CuO4
film. This PMMA pattern served as a mask for transferring
the pattern to the superconducting film by Ar-ion milling.
The scanning electron microscope �SEM� image in the inset
shows a detail �a single loop� of the resulting superconduct-
ing network. The network magnetoresistance was measured
using a Quantum Design physical properties measurement
system. The magnetic field was applied normal to the film
surface �the a-b crystallographic plane� and the bias current
was 1 �A.

Figure 2 shows measurements of the network resistance
R�T� at zero field as a function of temperature before �closed
circles� and after �open circles� patterning. Evidently, pat-

terning of the film into narrow wires causes broadening of
the resistive transition. In the following we show that this
broadening can be interpreted as the result of a decrease in
energy required to create a vortex/antivortex pair as the wire
width decreases. Figure 2 also shows an anomalous peak in
R�T� of the patterned film near Tc. A similar peak was ob-
served previously in superconducting nanostructures and its
origin is still debated.22–24

Figure 3 shows the network magnetoresistance measured
at different temperatures between 27 and 32 K. The mea-
sured magnetoresistance exhibits large oscillations superim-
posed on a monotonic background. The temperature up to
which the oscillations persist, which in what follows we de-
fine as the transition temperature, Tc, is �32 K. The oscil-
lation amplitude decreases as the field increases. At tempera-
tures above �32 K, R�H� exhibits an anomalous shape, the
magnetoresistance is decreasing with the field �negative
magnetoresistance�.25 The period of the oscillations, H0
�2300 Oe, corresponds to the magnetic flux quantum, H0
=�0 /�r2, where r�52.8 nm is the effective radius of the

FIG. 1. �Color online� Main panel: schematic description of a
sample consisting of 100�100 nm2 loops �orange color� intercon-
nected by 500 nm long wires �bright bars�. Inset: SEM image of a
single loop patterned by electron-beam lithography in a
La1.84Sr0.16CuO4 film. The whole sample contains 60�60 small
loops.
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FIG. 2. �Color online� Measured temperature dependence of the
resistance in a continuous film �solid circles, the dotted line is a
guide to the eyes� and the patterned film �open circles� at zero
applied field. The solid blue line is calculated using Eq. �5� with
Tc=32 K and Rn=76 � yielding fit values �0=750 nm, �0

=2.5 nm, d=23.4 nm, and w=21 nm. The red dashed line is based
on the Halperin-Nelson formula for a 2D superconductor �Ref. 21�
using the Berezinski-Kosterlitz-Thouless transition temperature,
TBKT=27.6 K, the fluctuation-corrected BCS critical temperature,
TBCS=32 K, and Rn=76 �.
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FIG. 3. Resistance of the patterned film as a function of mag-
netic field perpendicular to the sample plane �i.e., parallel to the
c-crystallographic axis� at different temperatures. The lowest and
the uppermost curves correspond to 27 K and 32 K, respectively.
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small loop. Oscillations of the period �80 Oe corresponding
to the large loops are also observed but on the scale of Fig. 3
their amplitude is too small to be noticed. In Fig. 4, the
circles show the measured temperature dependence of the
oscillations amplitude. Evidently, the magnetoresistance os-
cillations are observed only within a limited temperature
range around the transition, exhibiting the maximum ampli-
tude around 29.5 K.

III. THEORETICAL MODEL AND DISCUSSION

The magnetoresistance oscillations shown in Fig. 3 at the
first sight resemble the Little-Parks effect2,3 originating from
the periodic dependence of the critical temperature, Tc, on
the applied magnetic field. However, this resemblance is de-
ceptive. For an estimate, let us take as the typical26 value of
the coherence length, �0=2 nm, the critical temperature in
zero field at the onset of the resistance drop, Tc=32 K, and
the loop effective radius r= ��0 / ��H0��1/2=52.8 nm; using
these parameter values for the amplitude of oscillations in Tc
one obtains11,27 �Tc

LP=0.14Tc��0 /r�2�6.4 mK. From this
�Tc

LP we can calculate an upper limit to the resistance oscil-
lations amplitude, �R=�Tc

LP�dR /dT�, shown by the triangles
in Fig. 4. Evidently, �R expected from the Little-Parks effect
exhibits the maximum value which is a factor of �50
smaller than the maximum value measured in our experi-
ment. Moreover, attributing the data shown in Fig. 3 to the
Little-Parks effect leads to the illogical conclusion that �Tc

LP

would be temperature dependent. This is shown in Fig. 5,
where the solid points were calculated from the experimen-
tally measured oscillation amplitude, �R, and the tempera-
ture derivative dR /dT, using �Tc=�R / �dR /dT�. Note that
the extracted �Tc exhibits unexpected temperature depen-
dence with values that are two orders of magnitude larger
than the constant value of about 6.4 mK �the solid line in
Fig. 5�.28

Given that the Little-Parks effect cannot explain the ob-
served giant magnetoresistance oscillations, one needs to
look for alternative explanations. We conjecture that the ori-
gin of this phenomenon may be in drastically modified vor-
tex dynamics in nanopatterned films. While in continuous

films the activation energy for vortex creep usually decreases
monotonically with the applied magnetic field,29–31 in nano-
patterned films this activation energy becomes oscillatory,
since moving vortices interact with the current induced in
nanoloops, and this current is a periodic function of the field
strength. Periodicity of the induced current results directly
from the fluxoid quantization1–3,27 which is also the cause of
the Little-Parks effect. The fluxoid, consisting of the flux
induced by the supercurrent in the loop and by the external
magnetic field, is characterized by the quantum vorticity
number, N, which defines the energy state of the supercon-
ducting loop. In the lowest energy state, N is equal11,27 to
H /H0 rounded to the nearest integer. Thermally induced vor-
tices or antivortices cause fluxoid transitions from the equi-
librium quantum state, N, to a higher energy state. Kirtley et
al.9 and Kogan et al.,10 in their analysis of magnetic scanning
microscope measurements of mesoscopic superconducting
rings, calculated the energies �Ein

	 and �Eout
	 that are re-

quired to create a vortex �+� or an antivortex �−� in a super-
conducting wire forming a loop and to carry it into or outside
of the loop hole, respectively,

�Ein
	 = Ev�T� + E0�T��N − H/H0 + 1/2� 
 �H ,

�Eout
	 = Ev�T� + E0�T��N − H/H0 − 1/2� 
 �H . �1�

The first term in Eq. �1�, Ev, is field independent and
represents the energy needed for creation of the vortex/
antivortex in a ring with annulus width w. For our rings with
r /w�1 /2 we can use Ev=�0

2 ln�2w /���T�� /8�2��T�. Here,
��T�=0.74�0�1−T /Tc�−1/2 is the Ginzburg-Landau coherence
length11 and ��T�=2��T�2 /d the Pearl penetration depth11,32

in a film of thickness d and with the London penetration
depth11 ��T�=�0�1− �T /Tc�2�−1/2.

The second term in Eq. �1� is periodic with the field,
expressing the interaction of a vortex or an antivortex with
the current associated with the fluxoid in terms of the energy
E0. For our rings we use E0=�0

2 ln��r+w /2� / �r
−w /2�� /8�2��T�. The quantized values of N lead to periodi-

R
(
)

T (K)
27 28 29 30 31 32

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

x10

FIG. 4. Temperature dependence of the measured oscillation
amplitude �circles�. The solid line is calculated using Eq. �7� with
the parameters extracted from Fig. 2. The triangles show an upper
limit for the resistance oscillations amplitude calculated for the
Little-Parks effect; note that this scale is expanded tenfold.
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FIG. 5. �Color online� Solid circles: the amplitude of oscilla-
tions in Tc, �Tc=�R�H��dT /dR�, derived from the experimentally
measured oscillation amplitude, �R, and the temperature derivative
dR /dT. The solid black line connecting the experimental points is a
guide to the eyes. The solid blue line presents the change in Tc,
�Tc

LP, that one would expect from the Little-Parks effect. Note that
the two scales differ by 2 orders of magnitude.
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cally oscillating values of �N−H /H0�. The third term in Eq.
�1� is the energy of the magnetic dipole moment, ��T�
=�0w2 /32���T�, associated with a vortex or an
antivortex.33

As fluxoid transitions of higher order, N→N+m with
�m�2, are statistically less significant, we consider fluxoid
transitions accomplished by only one vortex or antivortex
entry or exit. Thermodynamic averaging over the above four
types of excitation energies, �Ei

j, yields an effective potential
barrier, ��E	,

��E	 = 

i�in,out

j�+,−

�Ei
je−�Ei

j/kBT� 

i�in,out

j�+,−

e−�Ei
j/kBT. �2�

Using Eq. �1� one obtains

��E�T,H�	 = Ev + E0/2 − E0�N − H/H0�tanh�E0�N − H/H0�
kBT


− �H tanh��H

kBT
�

� Ev − E0�N − H/H0�tanh

��E0�N − H/H0�
kBT

 − �H tanh��H

kBT
� . �3�

In the approximations made in Eq. �3� we assumed that
Ev�E0, which is especially valid for narrow rings, r�w.
The first term in Eq. �3�, Ev�T�, describes the zero-field ex-
citation energy as a function of temperature, since the other
two terms vanish at zero magnetic field. The second term
describes the periodic part and the third term is responsible
for the monotonic field-dependent “background” �see Fig. 3�.
Note that in this model Ev, E0, and � depend only on tem-
perature.

In the next step, we derive the magnetoresistance follow-
ing Tinkham’s approach in his analysis29 of the resistive tran-
sition in high-Tc superconductors. Replacing the activation
energy in his equations with ��E	 as given in Eq. �3� yields

R

Rn
= �I0� ��E	

2kBT
�−2

, �4�

where I0 is the zero-order modified Bessel function of the
first kind. In the following, we show that Eq. �4� in conjunc-
tion with Eq. �3� can explain a rich variety of phenomena,
including the observed transition broadening, the oscillations
of magnetoresistance, the temperature dependence of the os-
cillation amplitude, and the shape of the monotonic back-
ground on which the magnetoresistance oscillations are su-
perimposed.

Equations �1�–�4� are applicable to a single loop of radius
r and can also apply to a wire for which r→�. In applying
these equations to a network of decoupled loops intercon-
nected by relatively long wires �see Fig. 1�, we note that the
total resistance of such a network is R=Rloop+Rwire, where
Rloop and Rwire are the resistances of a small loop and of a
single interconnecting wire, respectively. Expressions for
Rloop and Rwire can be obtained on the basis of Eq. �4�,

R = Rn
loop�I0� ��Eloop	

2kBT
�−2

+ Rn
wire�I0� ��Ewire	

2kBT
�−2

,

�5�

where ��Eloop	 and ��Ewire	 are given in Eq. �3� by including
and omitting the E0 term, respectively. �The term E0 is re-
sponsible for the oscillations that are absent in the wires.�
For the network described in Fig. 1, Rloop and Rwire are 22%
and 78%, respectively, of the measured Rn=76 � at Tc
=32 K, reflecting the relative lengths of the short and the
long wires in the network.

A. Transition broadening at zero field

The solid blue line in Fig. 2 shows a fit to the data points
of the resistance in a patterned film in the transition region,
using Eq. �5� in the zero-field limit. Note that in this limit
��Eloop	 and ��Ewire	 reduce to Ev�T�. This fit yields d
=23.4 nm, w=21 nm, Tc=32 K, Rn=76 �, �0=750 nm,
and �0=2.5 nm. The calculated resistance is in a reasonably
good agreement with the experimental data, indicating that
the transition broadening is primarily due to enhanced vortex
motion across narrow wires due to reduced Ev. Equation �5�
does not account for the anomalous resistive peak observed
at elevated temperatures. A similar peak was observed in
other superconducting nanostructures22–24 but its origin is
still controversial.

The dashed line in Fig. 2 shows an attempt to fit the
resistance data of the patterned film to the Halperin-Nelson
formula for 2D superconductors, based on vortex-antivortex
unbinding.21 In the calculation of this curve we assumed a
BKT transition temperature, TBKT=27.5 K, and the
“fluctuation-corrected BCS critical temperature,” TBCS
=32 K. Apparently, this model does not account for the tem-
perature dependence of the magnetoresistance measured in
our nanoloops except for a limited temperature range in the
immediate vicinity of �27.5 K. At higher temperatures the
Halperin-Nelson formula describes “fluctuation-corrected
BCS behavior,” which does not explain our results.

B. Oscillations amplitude—temperature dependence

As the origin of the oscillations is in the small loops, in
the following we derive an expression for the oscillations
amplitude based on Eq. �3�. We apply this equation for low
fields such that the term −�H tanh��H /kBT� in the excitation
energy �Eq. �3�� is small compared to Ev. Using the approxi-
mation tanh�E0�N−H /H0� /kBT��E0�N−H /H0� /kBT in the
periodic term, one obtains

R

Rn
� �I0�Ev/2kBT − �E0�N − H/H0�/kBT�2/2��−2, �6�

which is an oscillating function of the magnetic field.
One can approximate the amplitude of the oscillations,

�R�T�, as the difference between the zero-field curve,
R�T ,H=0�, and the shifted resistance curve R�T ,H=H0 /2�.
If the difference is relatively small, �R can be approximated
as
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�R �� dR

d�E	
�

H=0
�E = Rn

I1�Ev/2kBT�
I0�Ev/2kBT�3� E0

2kBT
2

, �7�

where �E is the amplitude of periodic change in the excita-
tion energy with the field and I1 is the first-order modified
Bessel function of the first kind. This equation, which was
derived for a single loop, is also valid for the network if we
replace Rn with Rn

loop, because the origin of oscillations is in
the small loops.

We note that Ev and E0 are functions of two length scales,
�0 and �0. The calculated amplitude, using Eq. �7� with �0
=750 nm, �0=2.5 nm, r=52.8 nm, d=23.4 nm, and w
=21 nm, is shown as the solid line in Fig. 4. A fairly good
agreement between the experimental data and the theoretical
curve is obtained. We note that the values of the parameters
�0 and �0 may be influenced by the lithography process,
which may cause damage in regions near the surface and
sides and make the effective thickness and width signifi-
cantly smaller than the nominal values.

It should be mentioned that an earlier work has found
large-amplitude magnetoresistance oscillations in a different
nanostructure made of two low-Tc superconducting
nanowires.34,35 These oscillations were attributed to the field-
driven modulation of barrier heights for phase slips. As that
interpretation relates to one-dimensional superconducting
wires �w���, it may not be directly applicable to our high-Tc
loops in which the wire width is an order of magnitude larger
than the coherence length.

C. Magnetoresistance oscillations—field dependence

Figure 6 shows a comparison of the field dependence of
magnetoresistance measured at 29.5 K �open circles� with
the one calculated using Eq. �5� �the solid gray line� and
taking Ev=94 and E0=72 in the units of kB and �=28 in the
units of kB /T. A good agreement between the calculated
curve and the experimental data is seen only at low fields. As
the field increases, the experimentally measured amplitude
decreases while the calculated amplitude remains almost
constant. The agreement between the theory and the experi-
ment can be extended to high fields if we take into account
the distribution of the size of loops in the patterned film. As
loops of different size give different period of oscillations,
averaging over a size distribution of the small loops causes a
decrease in the oscillations amplitude. We can account for
this size spread assuming an equal-size distribution of 	8%
around the median value of 52.8 nm and then average over
the contributions to R�H� from loops of different sizes. This
procedure yields a good fit �the solid black curve in Fig. 6�
over a large field range.

It should be noted that a decay of the magnetoresistance
oscillations at high fields was observed not only in
networks5–7 but also in low-Tc cylinders2–4 and, more re-
cently, in a high-Tc superconducting single ring.19 The latter
observation may be ascribed to variation in the order param-
eter along the radial direction across the relatively wide ring
�270–300 nm�, creating a discrete number of concentric in-
dependent domains where supercurrent density is different
from zero.19 In low-Tc cylinders2–4 the oscillations originate
from the Little-Parks effect, i.e., from the changes in Tc with
field. The resulting magnetoresistance changes are propor-
tional to dR /dT which decreases as the field increases.

TABLE I. The values of Ev and � at different temperatures.

T
�K�

Ev
�K�

�
�K/T� Ev /2kBT

� /2kBT
�1/T�

30 63 21 1.1 0.4
�� � 129.5 93.5 30 1.6 0.5

29 134 41 2.3 0.7

28 243 77 4.3 1.4 ��1

27 349 104 6.5 1.9
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FIG. 6. Magnetoresistance oscillations at 29.5 K: measured
�open circles� and calculated using Eq. �5� �the solid gray line�. The
solid black line is calculated with the same equations but assuming
a size distribution of the loops, resulting in the spread of 	8% in
H0 around the mean value of �2300 Oe.
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FIG. 7. �Color online� Theoretical fits of the nonoscillating
background �the line connecting the minima of the oscillatory mag-
netoresistance� to the experimental data �black lines� taking into
account �a� only vortices �left panel, red lines� and �b� both vortices
and antivortices �right panel, blue lines�.
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D. Monotonic field background

We define the background as the line connecting the
minima points of the oscillatory magnetoresistance. Thus, in
calculating the background, the periodic term included in
��Eloop	 of Eq. �5� is neglected as it takes zero value at fields
mH0 with integer m. Assuming that only vortices are present
in the system the resistance would be

Rbackgr = Rn
loop�I0��E0 − ��H��/�2kBT���−2

+ Rn
wire�I0�− ��H�/�2kBT���−2. �8�

In the presence of both vortices and antivortices, ��H� in Eq.
�8� has to be replaced by �H tanh��H /kBT�. Two fits of
expression �8� to the experimental data at different tempera-
tures are shown in Figs. 7�a� and 7�b�, the first assuming the
presence of vortices alone and the second assuming the pres-
ence of both vortices and antivortices. It can be seen clearly
that taking into account only vortices fails to explain the
background at temperatures above �28.5 K while taking
into account both vortices and antivortices provides a much
better description of the experimental results.

The fits shown in Fig. 7�b� yield the values of Ev and � at
different temperatures listed in Table I. These values de-
crease with temperature as predicted in Ref. 33 and are of
same order of magnitude as the calculated values of Ev
=�0

2 ln�2w /���T�� /8�2��T� and ��T�=�0w2 /32���T�.
The need to account for antivortices in explaining the

magnetoresistance background at high temperatures becomes
apparent by considering the probabilities PV and PAV of ther-
mally excited vortex and antivortex in a superconducting
wire. These can be expressed as PV�T ,H��exp�−�EV
−��H�� /kBT� and PAV�T ,H��exp�−�EV+��H�� /kBT�, re-
spectively. In Fig. 8 we show the calculated PV and PAV as a

function of temperature for different fields. From these
curves it is clear that at high magnetic fields the probability
of antivortices is highly suppressed. However, at sufficiently
high temperatures antivortices occur with a relatively high
probability even at high fields.

IV. SUMMARY AND CONCLUSIONS

In uniform �unpatterned� films the activation energy for
vortex creep usually decreases monotonically with the ap-
plied magnetic field.29–31 In contrast, in films nanopatterned
into a network of loops, this activation energy becomes os-
cillatory, because moving vortices interact with the periodi-
cally oscillating current induced in the loops. The activation
energy also includes a term that varies monotonically with
the applied field because of magnetic interaction of vortices
and antivortices with the applied field. The combination of
monotonic and oscillatory terms of the activation energy
gives rise to magnetoresistance oscillations superimposed on
a monotonically increasing background. On the basis of this
model, we have derived analytical expressions for the mag-
netoresistance oscillations and for the background and
showed good quantitative agreement with the experimental
results obtained from an array of noninteracting nanosized
loops in a La1.84Sr0.16CuO4 film.

In analyzing the monotonic background of magnetoresis-
tance we showed that it is necessary to account for the pres-
ence in the film of antivortices alongside with vortices, es-
pecially at elevated temperatures. This finding may have an
implication on the debated BKT transition, which predicts
dissociation of vortex-antivortex pairs above the transition
temperature in thin superconducting films. Further study of
the possibility of manifestation of Berezinskii-Kosterlitz-
Thouless transition in our experiment requires an extension
of our analysis to include the contribution of vortex-
�anti�vortex interactions to the activation energy.
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