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Abstract. We study the magnetoresistance of aluminium 'double-networks' formed by 

connecting the vertexes of nano-loops with relatively long wires, creating two interlaced 

subnetworks of small and large loops (SL and LL, respectively). Far below the critical 

temperature, Aharonov-Bohm like quantum interference effects are observed for both the LL 

and the SL subnetworks. When approaching Tc, both exhibit the usual Little-Parks oscillations, 

with periodicity of the superconducting flux quantum Φ0=h/2e. For one sample, with a relatively 

large coherence length, ξ, at temperatures very close to Tc, the Φ0 periodicity of the SL 

disappears, and the waveform of the first period is consistent with that predicted recently for 

loops with a size a < ξ, indicating a crossover to 2Φ0 periodicity.   

1.  Introduction 

In a multiply connected superconductor, the fluxoid, defined as the sum of the magnetic flux and the 

line integral of the screening current, is quantized in units of Φ0 = h/2e, where the 2e is a hallmark of 

electron pairing in the superconductor. As a direct consequence of this fluxoid quantization, periodic 

oscillations of the critical temperature Tc as a function of magnetic field, known as the Little-Parks effect 

manifest themselves as oscillations of the magnetoresistance (MR) close to Tc. The amplitudes of the 

critical temperature, Tc, and the magnetoresistance oscillations, R, are related by the slope of the 

resistance vs. temperature, R(T): ∆𝑅 ≈ (d𝑅/d𝑇)∆𝑇𝑐 [1].  

Theoretical studies [2] have predicted that in superconducting nano-loops with a length-scale a < ξ 

the dominant periodicity is h/e rather than h/2e. The same theories predict that for high-Tc 

superconductors (HTS) with d-wave symmetry, the h/e periodicity is also expected for a ≳ ξ. Recent 

experiments ([3, 4]) failed to identify the h/e component in HTS, probably because ξ0 in these materials 

is only ~2 nm and, therefore, a >> ξ in most of the temperature range.  

In the present study we focus on aluminium, a low-Tc superconductor with a relatively large bulk 

coherence length (ξ0 = 1.6 μm). In nanostructures made of diffusive thin films the coherence length is 

reduced due to the finite mean free path, and simultaneously the penetration depth L is enhanced. 

Typical values of ξ in these aluminium nanostructures lie in the range of 100 to 200 nm. Close to Tc, the 

coherence length ξ(T) diverges, allowing in principle to meet the criterion a < ξ in nanostructures with 

circumferences in the order of several hundred nanometres. On the other hand, the critical field of bulk 



 

 

 

 

 

 

Al amounts to only 10 mT, giving a strong limitation for the number of Little-Parks oscillations (LPO) 

that can be observed. In reduced dimension, i.e. when the lateral dimensions are in the order of the 

penetration depth L, the critical field Bc may increase to a few hundred mT. Taking these considerations 

together, we fabricated 'double-networks' [3], see figure 1, with small loops of order of 400 x 400 nm2, 

connected by wires of ~ 1600 nm length. An applied field of ~ 10 mT corresponds to a flux of h/2e 

through the small loops.  

 

 

 

 

 

Figure 1. Scanning electron micrograph of an Al 

double-network (sample 1) with large (small) 

loop side length 1.71 µm (426 nm), line width  

w = 50  5 nm, thickness d = 30 nm. 

 

2.  Experimental 

2.1.  Sample fabrication 

We use a lift-off electron beam lithography process in which Al is electron-beam evaporated onto a 

cooled, pre-patterned, oxidized Si substrate. The lithographic mask is then removed in warm acetone. 

The width of the lines is around 60 nm, the film thickness amounts to 30 nm. The arrays consist of 

roughly 10 x 10 loops. The samples feature normal state resistance of Rn = 20 - 40 .  

2.2.  Transport measurements 

Due to the pronounced temperature dependence of the LPO, particular care is taken to stabilize the 

cryostat temperature during the magnetic field sweeps. We use a combination of a carefully calibrated 

resistive thermometer to determine the absolute temperature and a capacitive sensor for keeping it 

constant within  1 mK around the set-point temperature. The set temperature spacing is adapted to the 

steepness of the R(T) curves and amounts to a few mK around Tc. Before starting the magnetoresistance 

sweeps the temperature is allowed to stabilize for several minutes. 

The cryostat is equipped with home-made high-frequency filtered cables to record the four-point 

differential resistance dV/dI by biasing a DC bias current that is kept smaller than 500 nA superimposed 

with a small AC current in lock-in technique. We simultaneously measured the resistance R = V/I which 

shows qualitatively the same but more noisy data than the dV/dI. The low temperature critical current 

of the samples amounts to 50 - 250 µA. Close to Tc, where the LPO are maximal, the zero-field critical 

current still amounts to more than 2 µA.  

The magnetic field is applied perpendicular to the sample plane using a superconducting solenoid. For 

each temperature, measurements are performed at a sweep rate of ~ 5 mT/min. For each temperature we 

record a sweep with increasing and decreasing field, as a control for constant temperature throughout a 

sweep, and in order to be able to correct for small field offsets. The field range is adapted to the critical 

field at the set temperature.  



 

 

 

 

 

 

Table 1. Dimensions and transport characteristics of the two samples presented in this article. LL: large 

loops, SL small loops. w: line width from electron micrographs, wfit: line width from fit to eq. (1), : 

coherence length from fit to eq. (1), cal: coherence length from fit to eq. (2), Tc: critical temperature, Ic: 

critical current at 300 mK, Bc: critical field extrapolated to T = 0 from the dV/dI(B) measurements, Rn: 

normal resistance measured above Bc. For sample 2 the fits have been performed with the low-bias data 

shown in figure 3. 

Sample 

No. 

SL size 

(nm) 

LL size 

(nm) 

w  

(nm) 

 

wfit  

(nm) 

 

cal 

(nm) 

 

 
(nm) 

 

Tc 

(mK) 

 

Ic 

(µA) 

 

Bc 

(mT) 

Rn 

() 

1 42610 171030 5010 505 11824 10210 14085 555 19410 33.21 

2 32410 154030 6610 615 11419 13715 14575 24010 15210 23.31 

3.  Results 

3.1.  Critical temperature, critical field and coherence length 

Figure 2 a) shows differential MR, dV/dI(B), curves in the temperature range 380 - 1600 mK, recorded 

on sample 1 with 426 nm side length of the small loops and 1.71 µm of the large loops (see table 1 for 

sample dimensions). From the set of dV/dI(B) curves we construct the envelope of the Bc(T) phase 

boundary (without the oscillatory part) from which we deduce the coherence length, , and Tc using the 

relation [7] 

𝑇c(𝐵) = 𝑇c [1 −
𝜋2

3
(
𝑤fit𝐵

0
)
2
] , (1) 

where 𝒘𝐟𝐢𝐭 is the width of the wire. For comparison we also estimate the coherence length from the low 

temperature critical field, Bc(0) assuming a thin slab in magnetic field resulting in the relation [10]: 

cal = √30/(𝑤𝐵𝑐(0))  (2) 

 
 

Figure 2. a) dV/dI(B) curves of sample 1 covering the whole field range and the whole temperature 

range from 388 mK (dark blue) to 1658 mK (yellow), b) Zoom into the positive field direction of selected 

data from panel a) close to Tc.  

The loop sizes have been determined by inspection of the electron micrographs and are additionally 

deduced from the observed flux periodicity assuming square-shaped loops. The numerical values for the 

various parameters are given in table 1. The values for Tc correspond well with the position of the R(T) 

= Rn/2 in the temperature curves as well as with the dV/dI(B) curve at which the largest oscillation 

amplitude is observed. Also, both estimates for the coherence length agree with each other within ~ 20% 

for both samples, supporting the suitability of the simplified models. Taking the average value of these 



 

 

 

 

 

 

two estimates, we find that for sample 1 (2) the ratio between the coherence length and the SL edge 

length a amounts to /a ~ 0.26 (0.39). Thus, we expect the transition to the h/e periodicity being more 

likely to be observable in sample 2. 

3.2.  Little Parks effect 

Figure 2 b) zooms into the positive field direction close to Tc. Figure 3 shows dV/dI(B) data for sample 

2 with SL size of 324 nm and LL size of 1.54 µm. For both samples and at all temperatures we observe 

symmetric periodic oscillations of dV/dI(B) corresponding to h/2e oscillations of the small loops (SL) 

and of the large loops (LL).  

 

Figure 3. a) Selected dV/dI(B) traces of sample 2. b) Same curves as in a) for a reduced range in positive 

field direction. c) FFT of the dV/dI(B) data shown in a). 

Closer inspection reveals for both samples a gradual change of the LL oscillations from a cusp-up 

form (typical of LPO) at low temperature, through a sinusoidal behaviour at intermediate temperature, 

into a cusp-down (SQUID-like) shape at higher temperatures. A similar crossover, induced by the bias 

current rather than by temperature, was reported by Sharon et al. for Nb chains of rings [5]. The effect 

is most pronounced at low fields when the flux through the SL is still smaller than 0/2. The amplitude 

of the LL oscillations vanishes at somewhat smaller temperatures than the SL oscillations. Both 

observations suggest that the coherence in the LLs is not fully developed and that weak links exist that 

act as Josephson junctions. Furthermore the amplitude of the LL oscillations is locally suppressed at odd 

multiples of 0/2 of the SLs. At these flux values the ring current in the SL is maximal. Hence, the 

suppression of the LL amplitude can be understood as an interruption of the ring current in the LLs. 

Similar observations were made in Al nanostructures consisting of several loops sharing the same 

strands [6, 7]. This observation is related to the Little-Parks-de Gennes effect [8] which describes the 

destruction and restauration of superconductivity in multiply connected superconductors around odd 

multiples of 0/2 [9]. 

3.3.  Little-Parks effect of small loops and transition to h/e periodicity  

We now turn to discuss the SL oscillations. These also show the typical cusp-up behaviour well below 

Tc and a sinusoidal shape close to Tc. This shape transition is most pronounced in sample 2 and is marked 

by a broadening and a shift of the resistance maximum at 0/2 to larger fields. The Fast Fourier 

Transform (FFT) of the data (see figure 3 c)) reveals that besides the usual h/2e component also an h/3e 

component is present which starts to dominate close to Tc. The h/3e component indicates a modulation 

of the amplitude of the regular h/2e LPO. We interpret these findings as an onset of the transition to h/e 

which is expected for very small loop sizes. Due to the limited field range that covers only slightly more 



 

 

 

 

 

 

than one period of the h/e, the fundamental h/e component cannot be seen in the FFT, but rather a higher 

harmonic of it, i.e. the h/3e component. 

To investigate this observation further we performed dV/dI(B) measurements on sample 2 under 

relatively high bias current of 2.1 µA. With this bias the apparent Tc is somewhat smaller than in the low 

bias data. Two examples of differential resistance curves, one with low and one with high bias, are 

plotted in figure 4 a). In the high-bias data the oscillations appear more pronounced and dV/dI(B) 

exceeds Rn around  = 0/2 and close to Bc(T). In these field ranges also irregular oscillations are visible 

although the LPOs are washed out in the low bias data. Both observations are consequences of the non-

linear current-voltage characteristics in this range and the differential measurement scheme. We checked 

that the absolute resistance remains everywhere smaller than Rn.  

 
Figure 4. a) Comparison of differential resistance vs. B curves of sample 2 with zero DC bias current 

and with finite DC bias current (2.1 µA) close to Tc. b) Energy vs. flux for a superconducting loop with 

a < , showing the modulation of the odd LPOs. Reprinted with permission from MacMillan Publishers 

Ltd: Nature Physics [2], copyright 2008. In this right figure  is described in units of 0 = h/e. 

For both curves, the shape of the central dip (at  = 0) is much different from that of the side dips 

(at  = 0), implying that the Little-Parks h/2e periodicity is broken. On the other hand, these data show 

a striking similarity to the theoretical calculations of Loder et al. [2] predicting h/e periodicity, as 

depicted in figure 4 b). Note that in this figure the flux is plotted in units of h/e. Unfortunately, we 

observe only one period as the field required to observe more periods exceeds the critical field, Bc(0), 

of this sample. Nevertheless, the nearly parabolic shape of the side minima and the distorted shape of 

the parabola centred at  = 0 may serve as a fingerprint of the predicted h/e periodicity. Note that the 

theoretical prediction (right panel) describes the oscillation in the energy while the experimental results 

(left) describe the differential resistance. The two, however, are related since both are directly related to 

∆Tc [10]. The similarity with the theoretical curve is most apparent for the high-bias dV/dI curve. This 

suggests that under these measurement conditions, i.e. when the system is driven close to the transition 

to the normal state, the relation between differential resistance and energy is most direct.  

3.4.  Aharonov-Bohm effect in small loops 

Finally we note that the temperature dependence of the amplitude of the SL oscillations is non-

monotonous. As figure 3 c) shows, at low temperature, T < ~1000 mK, we observe h/e and h/2e 

oscillations of the small loops that almost disappear for intermediate temperatures, ~1000 mK < T < 

~1200 mK. Above 1200 mK dominantly the h/2e and h/3e components corresponding to the Little-Parks 

effect appear. We attribute the low-temperature oscillations to quantum interference effects, i.e. the 

Aharonov–Bohm effect, indicating that also the phase coherence length of the quasiparticles, L, in this 

range is in the order of the perimeter of the SLs or larger. When increasing the temperature, inelastic 

scattering sets in that reduces L [11]. For completeness we mention that we do not observe such non-



 

 

 

 

 

 

monotonous behaviour for the LL oscillations, indicating that L is always smaller than the perimeter 

of the LLs.  

4.  Conclusions 

Summarizing, we have presented magnetoresistance data in interlaced networks comprising small and 

large loops made of aluminium. We observe the interplay between the magnetoresistance oscillations in 

these two subsets of loops. In particular, the 0 = h/2e periodic Little-Parks oscillations of the large 

loops are modulated by the flux conditions in the small loops. For a sample with high ratio between 

coherence length and loop size we observe an onset of the transition from the conventional h/2e to an 

h/e periodicity, as predicted for long coherence length. A full experimental verification of the theory 

requires measurements of more than one period. However, the relatively low critical field of aluminium, 

and the large period of small loops, presently impedes achieving this condition. Further improvements 

of the sample design and material quality are currently underway to overcome this limitation. 
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