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Uncorrelated behavior of fluxoids in superconducting double networks
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We study the effect of magnetic fields on the resistance R of a superconducting La1.84Sr0.16CuO4 film patterned
into a “double” network comprising nanosized square loops having their vertexes linked by relatively long wires.
The results are compared with those obtained in a regular network of square loops of the same size. Both networks
exhibit periodic dependence of R on the ratio �/�0 between the flux penetrating a loop and the superconducting
flux quantum. However, while the regular network exhibit features characteristics of collective behavior of the
loops, the double network exhibits a single-loop behavior. This observation indicates uncorrelated arrangements
of fluxoids in the double network, in agreement with a recent theoretical prediction.
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I. INTRODUCTION

A variety of superconducting networks have been studied,
both theoretically and experimentally, aiming at revealing
the correlated behavior of fluxoids in such networks.1–14

The foundation of these studies traces back to the fluxoid
quantization work of Little and Parks,15–17 who demonstrated
in magnetoresistance measurements the theoretical prediction
of London,18 showing that the deviation of the magnetic flux
through a superconducting loop from an integral number of
flux quanta must be compensated by a circulating current,
satisfying the equation

4πλ2

c�0

∮
j · d� = n − �

�0
,

where the line integral is taken around the loop, λ is the
penetration depth, � is the magnetic flux penetrating the loop,
and �0 is the superconducting flux quantum. In a network,
the above equation must be satisfied for each and every loop.
In addition, the arrangements of fluxoids in the underlying
network must fulfill the requirement of minimum energy.
These two requirements give rise to correlated arrangements
of fluxoids in periodic networks, the most famous one
being the checkerboard arrangement of fluxoids in a regular
square network,8,11,14,19 manifested by secondary dips of the
magnetoresistance at half integer values of �/�0.

Recently, we fabricated a superconducting network20,21

made by connecting the vertexes of small square loops with
relatively long wires, forming two interlaced subnetworks of
small and large loops. The motivation for designing such a
network was to create an array of decoupled small loops
that behave as isolated loops. In a previous paper22 we
theoretically simulated the behavior of this double network
in a perpendicular magnetic field. The simulations showed
that as the field increases, the vortex population in the small
loops grows in steps, resembling the behavior of an ensemble
of nearly decoupled loops. In addition, the loop energy E was
found to be a periodic function of the ratio �/�0, with a
wave form similar to that of a single isolated loop. Features
indicative of collective behavior of the loops, e.g., finite slope
dE/dH at H = 0, downward cusps in E(H ), and pronounced
secondary dips at half integer values of �/�0, which are found

in a regular square network, were all absent in the case of a
double network with large ratio between the size of the large
and small loops. The purpose of the present paper was to
confirm experimentally the predictions of these simulations.
For this purpose we fabricated a regular square network and
a double network having square loops of the same size, and
compared their magnetoresistance behavior.

II. EXPERIMENTAL

Molecular beam epitaxy was used to synthesize 26-nm-
thick optimally doped La1.84Sr0.16CuO4 film. The film was
patterned into two different networks: a regular square network
of 150 × 150 nm2 loops, and a “double” network—similar
to that described previously20—consisting of 150 × 150 nm2

square loops with their vertexes connected by ∼300-nm-long
wires. The scanning electron microscope (SEM) images of
Figs. 1(a) and 1(b) show a part of the square and the double
networks, respectively. The wire width in both networks, as
measured by the SEM, was ∼45 nm. Resistance measure-
ments were performed using a Quantum Design Physical
Property Measurement System (PPMS R©) with a bias current of
100 nA. Magnetic fields were applied normal to the film
surface (a-b crystallographic plane), keeping the temperature
constant (with a stability of a few mK), and then changing it to a
different value in the range 20–40 K for the next measurement.

III. RESULTS

Figure 2 shows the magnetoresistance per unit cell R(H )
for the simple square network (left-hand panel) and for the
double-square network (right-hand panel) as a function of
the applied magnetic field H , measured at the indicated
temperatures. Both networks exhibit periodic oscillations of
R vs. H with the same period of ∼900 Oe, corresponding
approximately to �0/A, where A = 150 × 150 nm2 is the area
of a single square loop. However, the oscillation wave form
R(H ) for the two networks is evidently different. While the
regular network exhibits features characteristic of collective
behavior of the loops, e.g., finite slope dR/dH at H = 0 and
downward cusps,7 the double network behavior resembles that
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FIG. 1. Scanning electron microscope images of the sim-
ple square (a) and the double-square (b) networks patterned
in La1.84Sr0.16CuO4 high-temperature superconducting film. The
brighter features are the superconducting wires composing the
networks.

of a single loop, exhibiting zero slope dR/dH at H = 0 and
upward cusps.

A closer look at the magnetoresistance oscillations reveals
fine structures in the magnetoresistance of both networks.
Figure 3 zooms on the magnetoresistance data of each network
at a temperature T/Tc ∼ 0.85. The square network [Fig. 3(a)]
exhibits pronounced secondary dips at half integer values
of �/�0 (see the inset), corresponding to the checkerboard
arrangement of fluxoids in this network.8,11,14,19 In the double
network these secondary dips are absent; however, as shown
in the inset to Fig. 3(b), oscillations of a period ∼ 80 Oe,
corresponding to the subnetwork of the large loops, are
superimposed on the longer period oscillations, corresponding
to the subnetwork of the small square loops, shown as a
paraboliclike “envelope” in the inset to Fig. 3(b). These small
oscillations, which are more pronounced at the minima of
R(H ), exhibit downward cusp characteristics of the square
network behavior originating from the large loops. Note that
the small amplitude oscillations corresponding to the large
loops could hardly be resolved in earlier experiments,20,21

probably due to a larger size distribution in the previous
samples that resulted in a distribution of field periodicities.

As shown in Fig. 2, the oscillatory behavior of R in both
networks is limited to a temperature range roughly between
∼22 and ∼31 K, resulting in nonmonotonic variation of the
oscillation amplitude �R with the temperature, as summarized
by the squares in Fig. 4. This figure also shows the temperature
dependence of the zero-field resistance per unit cell R(T )
(circles), as well as dR/dT (diamonds), for the regular and
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FIG. 2. (Color online) Resistance per network unit cell as a
function of magnetic field measured at different temperatures in the
square (a) and the double (b) networks.
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FIG. 3. (Color online) Resistance per network unit cell as a
function of magnetic field measured in the square (a) and the double
(b) networks at 26.5 and 25.5 K, respectively. The insets zoom on
the regions marked by dashed lines. Inset (a) shows a secondary
dip at half period corresponding to a checkerboard arrangement of
fluxoids in the square network. Inset (b) shows the magnetoresistance
oscillations corresponding to the large loops of the double network.
The solid line in inset (b) is a guide for the eye showing a paraboliclike
“envelope,” describing part of the period of the small loops.

the double networks. Evidently, R(T ) of the double network
is significantly larger as it includes the resistance of the long
wires composing the large loops. Nevertheless, the unit-cell
amplitude of the oscillations �R for both networks is similar,
indicating that �R cannot distinguish between the correlated
and uncorrelated behavior of fluxoids in networks of loops of
the same size.

Note that there is no correspondence between �R and
dR/dT (see Fig. 4), in contrast to what one would expect if
�R resulted from periodic changes in the critical temperature
Tc, as in the analysis of the Little-Parks experiment.15–17

A remarkable deviation from this analysis is also found in
the magnitude of �R. Contrary to classical superconductors,
in high-Tc materials the predicted changes in the critical
temperature �Tc ∝ Tc (ξ0/r)2 are extremely small because
of the short coherence length ξ0, so the standard analysis
fails to explain the large amplitude of the oscillations.23,24

In previous papers20,21 we developed a model for a single,
isolated loop which explains the physics of the double-network
magnetoresistance, including the large oscillation amplitude
and its temperature dependence. This model ascribes the
magnetoresistance oscillations in high-Tc superconductors to
the periodic changes in the interaction between thermally
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FIG. 4. (Color online) Resistance R measured at zero mag-
netic field (circles), amplitude of the magnetoresistance oscillations
(squares), and the derivative dR/dT (diamonds) as a function of
temperature in the square (a) and the double networks (b). Solid lines
are guide to the eye.
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excited moving vortices and the oscillating persistent current
induced in the loops.

IV. SUMMARY AND CONCLUSIONS

We observed different fluxoid quantization effects in a su-
perconducting double network as compared to a regular, square
network. The regular network exhibits correlated behavior of
the fluxoids, which is manifested by, e.g., finite slope dR/dH

at H = 0, downward cusps, and secondary dips at half integer
values of �/�0. In contrast, the subnetwork of the small square
loops in the double network exhibits a single-loop behavior
lacking all these features. This observation indicates uncorre-
lated arrangements of fluxoids in the subnetwork of the small
loops, in agreement with our recent theoretical prediction.22

Experimentally, the double network has an advantage over
a single loop as it allows application of larger currents, thus

improving the signal-to-noise ratio. In addition, measurements
on a large number of loops in the network average the effects
of inhomogeneity and size distribution, allowing more precise
studies of, e.g., recent theoretical predictions of “exotic” flux
periodicity in unconventional superconductors.25–31
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