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Micron-sized Hall bars and micro-SQUIDs are now used routinely to measure the local static and
dynamic magnetic response with micron-scale spatial resolution. While this provides a powerful new
tool, determining the intrinsic magnetization presents new challenges, as it requires correcting for
demagnetization fields that vary widely with position on a sample. In this paper we develop a method
to correct for the demagnetization effect at local points of a rectangular prism shaped sample using
a finite element analysis of Maxwell’s equation applied to local Hall sensor measurements calibrated
by bulk measurements of the magnetization. This method can be generalized to other geometric
shapes to analyze data obtained with local magnetic probes.

PACS numbers: 02.70.-c, 07.55.Jg, 75.50.Xx

1. INTRODUCTION

The demagnetizing field is the magnetic field Hd gen-
erated by the magnetization in a material. For a para-
magnet, it is related to an externally applied field Ha

(taken here to be spatially uniform), the measured mag-
netization M(r), and the magnetic susceptibility χ, via

M = χ(Ha + Hd). (1)

The demagnetizing field is directed opposite to the
magnetization, and for a magnetization measurement
taken on a bulk macroscopic sample, its magnitude is
generally approximated by a single demagnetization fac-
tor N , so that Hd = −N ·M. The demagnetizing factor
can be calculated analytically only for ellipsoids of rev-
olution, which have uniform magnetization. For some
specimens of simple shape, the demagnetizing factor is
calculated by empirical formulas; tabulated values are
available for particular shapes, including cylinders [1],
square bars [2] and rectangular prisms [3, 4] .

However, local measurements of magnetization mea-
sure a combination of the local field and the local de-
magnetization field, both of which may vary substantially
from point to point, so that one cannot use a single global
demagnetization factor N . In other words:

Hd(r) = −N(r)M(r). (2)

A correct interpretation of local measurements enabled
by local sensors such as micron-scale Hall and micro-
SQUIDs therefore requires a full nonlocal magnetostatic
analysis of the demagnetization effects. The need was re-
vealed by recent local measurements obtained by micron-
sized Hall sensors placed on the surface of millimeter-
sized crystals of the prototypical molecular magnet Mn12-
acetate [5]. These sensors in effect measure the normal
component of the magnetic field H at the sample sur-
face at the sensor position. Although the temperature-

and field-dependence were similar, measurements on the
same sample taken by Hall sensors at different positions
yielded widely different values for the magnetization and
thermodynamic quantities derived from these measure-
ments, such as the Weiss temperature, as demonstrated
in Fig. 1. This was traced to the fact that the demag-
netizing field depends crucially on the placement of the
Hall bar on the sample as well as the sample shape.
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FIG. 1: The Weiss temperature TW deduced from micron-
sized Hall sensor measurements taken at three different points
on a rectangular prism-shaped sample of the molecular mag-
net Mn12-acetate is shown as a function of magnetic field ap-
plied transverse to the easy axis. For each Hall sensor, TW

was extrapolated from plots of the inverse susceptibility ver-
sus temperature; see Ref. [5] for details and Appendix A for
discussion. Measured relative to one end of the 1.85 mm-long
sample, P1 is at 0 mm, P2 is at 0.21 mm, P3 is at 0.43 mm.
Except for Fig. 10, all the experimental data discussed and
shown in this paper refer to this particular sample.

In this paper we develop a model for interpreting
micro-Hall bar magnetometry data and demonstrate its
applicability for measurements on millimeter sized rect-
angular prism shaped samples of Mn12-acetate. A crucial
finding is that the nonlinearity implicit in the magneto-
static equation (magnetization produces demagnetizing
field which in turn produces magnetization) has a signif-
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icant effect on the micro-Hall bar measurements, most
particularly as one approaches a magnetic ordering tem-
perature where the susceptibility becomes very large.

2. THEORY

The physical situation of interest can be approximated
by an idealized model in which the sample is taken to be
a perfect rectangular prism as depicted in Fig. 2 oriented
so that the applied magnetic field is parallel to four of the
faces. A Hall sensor placed on a face measures the com-
ponent of the magnetic field perpendicular to the face;
the design of the sensors is such that the field component
is in effect measured at the surface of the sample [6]. As
shown in Fig. 2, the applied field is parallel to the plane
of the Hall sensor in the experimentally relevant case, and
the field component measured by the Hall sensor arises
only from demagnetizing fields.

FIG. 2: Schematic of the sample and Hall sensor. The rect-
angular prism-shaped sample has boundaries −x0 < x < x0,
−y0 < y < y0, −z0 < z < z0. The Hall sensor (labeled as
such) is on the surface x = x0 centered at (x0, y1, z1), and
covers the area (y1−a) < y < (y1 +a), (z1−b) < z < (z1 +b).
Calculated results shown in Fig. 3 (a) refer to the area labeled
1; calculated results shown in Fig. 3 (b) and Fig. 4 refer to
area 2.

The demagnetizing fields are computed from the stan-
dard magnetostatic equations relating the magnetic field
B, the magnetic induction H and the magnetization M

∇ ·B = 0 (3)

B = µ0(H + M) (4)

We assume that the magnetization is non-zero only inside
the sample volume defined above and is related to the
magnetic induction by a susceptibility tensor χ which is

local and the same at all points in the sample, so that

M(r) = χH(r) (5)

inside the sample. This is a good approximation so long
as one can ignore defects and sample degradation that
could cause variations in the local susceptibility.

In this paper we will deal with insulators (no free cur-
rents) so that the magnetic induction can be represented
as the gradient of a magnetic potential ΦM as

H = −OΦM . (6)

Then from Eq. 3 we conclude

O2ΦM = O ·M (7)

where M 6= 0 only inside the sample.
The general solution to Eq. 7, is [7]:

ΦM (r) = − 1

4π

∫
O′ ·M(r′)

|r− r′|
d3r′ (8)

where M(r′) is the limit of M as it approaches the bound-
ary point r′ from within the sample.

We next integrate the right hand side of Eq. 8 by parts
and define the unit normal at position r′ to be e′n obtain-
ing

ΦM (r) = − 1

4π

∮
A

e′n ·M(r′)

|r− r′|
d2r′

+
1

4π

∫
∇′
(

1

|r− r′|

)
·M(r′)d3r′ (9)

Moving the derivative in the second term from the r′ to
the r, taking the gradient of ΦM , noting that ∇2 1

|r−r′| ∼
δ3(r − r′), evaluating the result for r outside the sample
volume and adding the applied field Ha (assumed spa-
tially uniform) gives

H(r) = Ha +
1

4π

∮
(r− r′)

|r− r′|3
σ(r′)d2r′ (10)

with

σ(r) = en ·M(r) (11)

To transform Eq. 10 to a form amenable to numeri-
cal analysis we first take the limit as r approaches the
sample surface from outside, and then consider only the
component of Eq. 10 corresponding to fields normal to
the sample surface. This gives

en ·H(r)− 1

4π

∮
(r− r′)

|r− r′|3
σ(r′)d2r′ = en ·Ha (12)

with r now assumed to lie on the sample surface. We
further assume (as is the case in the experimental situ-
ation of interest here) that the sample is a rectangular
parallelepiped with planar surfaces parallel to the prin-
ciple axes of the susceptibility tensor χ which we take to
be independent of position within the material. Because
H(r) is continuous across the interface we then can write

en ·H(r) =
1

χn
σ(r) (13)
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with χn the eigenvalue of the susceptibility tensor rele-
vant to fields perpendicular to the surface at point r.

Combining Eqs. 12, 13 we finally obtain∮
A
d2r′D(r, r′)σ(r′) = en ·Ha (14)

with A the surface of the solid and

D(r, r′) =
1

χn
δ2(r− r′)− 1

4π

(r− r′)

|r− r′|3
(15)

Eq. 14 can be solved by standard finite element meth-
ods. However, before discussing this analysis we discuss
some general features of the solution. We are interested
in the case that the applied field Ha is parallel to four
of the sample surfaces (“the sides”) and perpendicular to
the other two (“top” and “bottom”) (see Fig. 2), while
the Hall bar is placed on the sample sides and detects the
field component normal to the side and thus also perpen-
dicular to Ha. With this in mind we now iteratively solve
Eq. 14 assuming the susceptibility is small. To leading
(−1) order in χ−1, D(r, r′) = 1

χn
δ2(r−r′) so σ(r) = 0 for

r on the sides and σ(r) = ∓χzzHa for r on the top (−)
or bottom (+) of the sample. To this order the fringing
fields vanish and a Hall sensor mounted on the side of
the sample would measure nothing.

The leading contribution to the field measured by a
Hall sensor mounted on the side of the sample is obtained
by iterating the equation, writing σ = σ(0) + σ(1) with
σ(0) = ∓χzzHa for r on the top (+) or bottom (−) of
the sample and zero otherwise, and σ(1) to be determined.
Inserting this into Eq. 14 and collecting terms of order χ
we obtain

σ(1)(r)− 1

4π

∮
(r− r′)

|r− r′|3
σ(0)(r′) = 0 (16)

Using the explicit form of σ(0) and converting from M to
H gives, for r on the side of the sample

en ·H(r) = χzzHa

(∮
bottom

−
∮
top

)
d2r′D(r, r′) (17)

Thus we see that for small values of the susceptibility the
value of the field measured by a Hall bar sensor mounted
on the side of the sample is proportional to the applied
field, to the component of the susceptibility parallel to
the applied field, and to the difference of the propagator
integrated over the top and bottom of the sample. If the
susceptibility is not too large, the measured micro-Hall
bar signal is proportional to the magnetic susceptibility
but with a coefficient that varies with position, in partic-
ular vanishing at high symmetry points, in our case half
way between the two planes. However, as χ increases,
the second order approximation used to derive Eq. 17
becomes inadequate. We observe that in general D has
negative eigenvalues, so the demagnetization corrections
act to reduce the magnitude of the magnetization induced
by an applied field; we also observe that the reduction

will not be uniform along the sample surface. Thus, the
degree to which demagnetization effects distort the mea-
surement is a complicated function of the magnitude of χ
and of the position of the micro-Hall sensor. Our previ-
ous experiments showed that these effects are important
in practice. To understand them in detail, a numerical
solution of Eq. 14 is required.

We use the finite-element method of Pardo et al. [1–3]
to numerically solve Eq. 14, which is briefly summarized
as follows. We cover the surface with N non-overlapping
rectangular tiles. Their size is chosen to keep the in-
crement of pole density in each direction being roughly
uniform. Thus the area Ai of tile i is smaller on the edges
and corners where the magnetization varies strongly in
space, and larger in the middle of the sample where the
magnetization changes slowly. The functional depen-
dence of the size in each direction δxi, δyi and δzi on
the coordinate of the tiles’ center position is described in
Ref. [4].

The number of divisions in each direction, 2nx, 2ny,
and (2nz + 1) (with a layer riding on the z = 0 midplane
with σ = 0), is taken by fixing the number of elements in-
tegrally belonging to the x, y, z > 0 region. The elements
centered at z = 0 have σi = 0, so that σi on these ele-
ments are known variables. For the sample we presented
in this paper, a = b = 0.3 mm, c = 1.85 mm, so we set
nx = ny, and we assume nz/nx is approximately c/a.
We tested three cases: (a) nx = ny = 10, nz = 55, (b)
nx = ny = 13, nz = 74 and (c) nx = ny = 20, nz = 119.
The results differ by less than 0.04%; we conclude that
the element sizes are small enough to yield reliable re-
sults. In the study that follows, we have assumed case
(a).

We define a matrix D (see Appendix B for details) with
components

Dij =
1

4πAi

∫
Ai

(

∫
Aj

en(ri) · (ri − rj)

|ri − rj |3
d2rj)d

2ri (18)

and approximate the solution of Eq. 14 as

χ−1
n σ(r) =

∑
j

(δij − χnDij)
−1

ejn ·Ha (19)

For materials such as Mn12 that have anisotropic suscep-
tibilities, see Appendix C for additional information.

3. RESULTS

We have solved Eq. 19 for a range of representative
cases, using typical experimental geometries and typical
values of susceptibility (χzz ∼ 0.1−1). Below we showed
a case of χxx = χyy = 0.016, χzz = 0.40.

Figure 3 shows the surface pole distribution σ induced
by a field applied along the z axis. As expected, the
surface poles are largest on the top and bottom surfaces
(left panel, surface normal parallel to the applied field);
the demagnetizing field weakens near the edges so the
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FIG. 3: An example of the calculated distribution of the in-
duced surface magnetic pole density σ normalized by the value
of applied magnetic field Ha on a rectangular prism-shaped
crystal of Mn12-acetate. The coordinates are defined in Fig.
2 with x0 = y0 = 0.15 mm and z0 = 0.95 mm. Frame (a) and
(b) refer to area 1 and 2, respectively, shown in Fig. 2 In this
calculation we set H⊥ = 0 T, Hz = 0.1 T. The unit of σ/Ha

is dimensionless.

moments become larger. The moments are smaller on the
side panels, and exhibit the spatial variation qualitatively
expected from the small χ analysis: the field is largest
near the top and bottom, and vanishes at the midpoint.

Figure 4 shows the induced magnetic field in three di-
rections on the x = x0 surface of the crystal. The field
in the x direction is bigger near the end of the crystal;
the field in the y direction is almost zero except near
the corner close to the y = y0 surface; the field in the z
direction is negative, which means the field direction is
opposite to the externally applied field, as expected for
a demagnetization field. Using this, we can calculate the
corresponding Hall sensor signal and compare with the
experimental result. We define Hx,Hall(r) =< Hx(r) >,
integrating the x component of the field (Fig. 4a) over
the area where the Hall sensor is positioned to obtain the
expected Hall sensor signal:

VHall−calculated(r) = α ·Hx,Hall(r), (20)

where the Hall effect coefficient α is obtained experimen-
tally by calibrating the Hall sensor response as a function
of magnetic field applied perpendicular to the surface.

Figure 5 shows the calculated induced Hx as a function
of distance away from the sample center along the middle
line (y = 0) of the x = x0 surface for several values of
the susceptibility within the expected range for Mn12-ac
between 3 and 15 K. It is clear that as χzz gets bigger,
the field near the edge increases.

In sections 2 and 3, we presented a method for ex-
tracting the VHall for a given intrinsic susceptibility χ
in an external magnetic field as well as the inverse pro-
cess, namely, extracting χ from VHall. Both cases require
that geometric factors such as aspect ratio and sensor
location be specified. In the next section, we summarize
these steps, and apply the method to analyze experimen-
tal data [5].
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FIG. 4: The magnetic field on the x = x0 surface of the crystal
normalized by the applied magnetic field Ha (area 2 in Fig. 2).
The coordinates are defined in Fig. 2 with x0 = y0 = 0.15
mm and z0 = 0.95 mm.
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FIG. 5: Calculated results for Hx|y=0(z) for different values
of χzz; the values of Hx are normalized by the corresponding
χzz.

4. APPLICATION OF METHOD TO
EXPERIMENT

In Reference [5] we presented a method to obtain the
demagnetization-corrected susceptibility χ for samples of
M12-acetate as a function of temperature in the absence
of a transverse magnetic field. Using this result as a start-
ing point, we now extend the method to correct for the
demagnetization factor for measurements taken in the
presence of a transverse field, i.e., obtaining the intrinsic
χ from the apparent χapp−meas = Hx,Hall,measured/Ha =
VHall−measured/α/Ha.

Using the numerical method in section 3, we are able to
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calculate VHall−calculated using a given values of χ for the
given sample aspect ratio. We then obtain the calculated
apparent susceptibility χapp−cal = Hx,Hall,calculated/Ha =
VHall−calculated/α/Ha from Eq. 20. This process can
be summarized by expressing the Hall sensor signal as
a function ζ of the intrinsic susceptibility:

χapp−cal(T,H⊥) = ζ{r,c/a,H⊥,α}(χ(T,H⊥)) (21)

where ζ is a function of the parameters r (the Hall sensor
location), c/a (aspect ratio of the sample), H⊥ (applied
transverse field) and α (Hall effect coefficient of the sen-
sor).

Figure 6 shows a comparison between the a direct Hall
sensor measured χapp−meas and the calculated χapp−cal

for a same sample using the above method. The value
of intrinsic χ(T, 0) used in the calculation is deduced
from measurements (in a Quantum Design MPMS mag-
netometer) of bulk samples of M12-acetate as a function
of aspect ratio in the limit of infinitely long, thin samples
for which the demagnetization corrections are negligible
[8]. As shown in this figure, for different sensor locations,
the calculated results differ from the measurements by
different amounts. In addition to a multiplicative factor,
which is simply a calibration of the signal amplitude, an
additional shift in the temperature axis is required to
collapse the lines onto a single curve.

0 5 10 15
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150
 P1 Calculated
 P2 Calculated
 P1 Measured
 P2 Measured

0H =0 T

-1 ap
p (S

I U
ni

t)

T (K)

FIG. 6: Temperature dependence of the calculated (closed
symbols) and measured (open symbols) inverse apparent sus-
ceptibility of Mn12-ac for zero transverse field. P1 and P2 are
two different sensor locations as defined in Fig. 1.

Both χ−1
app−meas and χ−1

app−cal are linear between 3 K
and 6 K for zero transverse field up to H⊥ = 6 T, and can
be denoted as χ−1

app−cal = a1 · (T − T1) and χ−1
app−meas =

a2 · (T −T2). We can eliminate T in the equations to get
χ−1

app−cal = a1 · (χ−1
app−meas/a2 + T2 − T1).

The difference between the χapp−cal and χapp−meas

originates from several factors, including the uncertainty
in the measured coefficient α in Eq. 20, the uncertainty
of the Hall-sensor active area, deviations from the as-
sumed sample shape from a perfect rectangular prism,
and other possible sources.

We assumed that none of the factors are affected by
a transverse magnetic field, i.e., the fitting constant a1,
T1 and a2, T2 are determined by factors other than H⊥.

They can be calibrated at zero field, where the χapp−cal

can be calculated using the demagnetization corrected χ
obtained from MPMS measurements. This process can
be abstracted as follows:

χ(T, 0)
Eq.21−−−−→ χapp−cal(T, 0)

χapp−meas(T, 0)

}
−→ a1, T1; a2, T2

In order to interpret our results in the presence of a
transverse field, H⊥, we now apply the same horizontal
shift and multiplication to the χapp−meas(T ) as was done
in zero transverse field to obtain χapp−cal in the presence
of a constant transverse field, H⊥ 6= 0. Then we use
relationship Eq. 21 to deduce the χ(T ) from the inferred
χapp−cal. This process can be abstracted as follows:

χapp−meas(T,H⊥)
χ−1
app−cal=a1·(χ

−1
app−meas/a2+T2−T1)

−−−−−−−−−−−−−−−−−−−−−−−−→

χapp−cal(T,H⊥)
Eq.21−−−−→ χ(T,H⊥) (22)

In Fig. 7 we compare the resulting χ(T ) with a mean
field approximation (MFA) χMFA(T ) calculation using
the Random Field Ising Ferromagnet (RFIFM) model
described in Ref. [5, 9]. Good agreement is obtained,
providing validation of the assumptions made in our cal-
culations for the demagnetization correction.

FIG. 7: Susceptibility χ versus temperature in different trans-
verse magnetic field for the P1 position on the Mn12-ac sam-
ple. In both panels, the lines are the χMFA results obtained
by a mean field calculation of Millis et al. [9]. The symbols
data (a) as taken, and (b) corrected by the method described
above.

5. SUMMARY

We have shown that micron-scale magnetization mea-
surements require an analysis to account for the effect
of demagnetizing fields that goes well beyond the usual
linear approximation. As shown in this paper, the mea-
sured field is linearly proportional to the applied mag-
netic field within a restricted range of the parameters,
while strongly nonlinear behavior obtains for large val-
ues of the susceptibility, most particularly in the regions
near the ends of a sample where the Hall bar signal is
largest.
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We summarize the proposed steps that need to be
taken to correct for the demagnetization effect when us-
ing local micron-scale Hall sensors.

First, for a given sample geometry and sensor place-
ment (in our case, a right rectangular prism with Hall
bars placed along one face), one must calculate the re-
lationship between the intrinsic susceptibility and the
measured Hall voltage using Maxwell’s Equations and
Coulomb’s law for magnetic poles, and implemented by
using finite element methods such as those of Pardo et
al. [1–4]. Second, a calibration of the absolute value of
the susceptibility must be obtained by comparing with
measurements on a bulk sample for which the intrinsic
susceptibility can be easily measured or calculated. In
our case, for example, we used SQUID-based measure-
ments in zero transverse field of the χ obtained from bulk
measurements as a function of aspect ratio extrapolated
to the value for an infinitely long sample, as described
earlier [8]. These steps provide a relationship that allows
us to convert between the χ and the VHall.

The relationship can then be used to correct for the
demagnetizing effect by extension where appropriate. In
our case, the parameters and the relationships that were
obtained by a simple analysis using electromagnetic the-
ory in the absence of transverse field were then assumed
to be unaltered in the presence of transverse magnetic
field, enabling us to correct (by extension) for the de-
magnetization effect (to obtain χ from VHall) in a field.
We note that the results obtained by this procedure agree
with the MFA calculations of Millis et al. [9].
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Appendix A: Critique of Assumption of Uniform
Magnetization

The assumption of uniform magnetization is commonly
made in magnetic measurements. In this section, we will
show that it is not suitable for local magnetometry.

With the coordinates defined in Fig. 2, M is uni-
form means M = My ŷ + Mz ẑ inside the sample (we
have applied field in both y and z directions). We have
O′ ·M(r′) = 0, so that the only contribution to ΦM comes

from the surface pole density (Eq. 9):

ΦM (r) =
1

4π

∫ x0

−x0

∫ z0

−z0
(

−My

|(x, y, z)− (x′,−y0, z′)|

+
My

|(x, y, z)− (x′, y0, z′)|
)dx′dz′

+
1

4π

∫ x0

−x0

∫ y0

−y0
(

−Mz

|(x, y, z)− (x′, y′,−z0)|

+
Mz

|(x, y, z)− (x′, y′, z0)|
)dx′dy′

1

µ0
Bx = Hx = −∂ΦM

∂x

=
1

4π

∫ x0

−x0

∫ z0

−z0
(

x− x′

|(x, y, z)− (x′,−y0, z′)|3

− x− x′

|(x, y, z)− (x′, y0, z′)|3
)dx′dz′ ·My

+
1

4π

∫ x0

−x0

∫ y0

−y0
(

x− x′

|(x, y, z)− (x′, y′,−z0)|3

− x− x′

|(x, y, z)− (x′, y′, z0)|3
)dx′dy′ ·Mz

= K1(r) ·My(Hy) +K2(r) ·Mz(Hz)

where K1(r) and K2(r) are geometric factors depending
only on the location of the sensor, and we assumed that
the applied magnetic field is along z direction.

From this, we can deduce a commonly used approxi-
mation in Hall sensor measurements: the fringing field
Bx is a linear function of Mz. As we show below, if the
Hall sensor is placed in the center of the sample along the
y-direction (y = 0), the My term vanishes after averaging
over the Hall area:

K1(r) =
1

4π

∫ x0

−x0

∫ z0

−z0
(

x− x′

|(x, 0, z)− (x′,−y0, z′)|3

− x− x′

|(x, 0, z)− (x′, y0, z′)|3
)dx′dz′

=
1

4π

∫ x0

−x0

∫ z0

−z0
(

x− x′

((x− x′)2 + y2
0 + (z − z′)2)3/2

− x− x′

((x− x′)2 + y2
0 + (z − z′)2)3/2

)dx′dz′

= 0

Thus, if the Hall sensor is on the middle line at y = 0,
then Bx is proportional to only Mz because K1 is zero.
Note, however that χzz is related only to Mz whether or
not the Hall sensor is placed at y = 0, since the xyz axis
are aligned with the principal axis of the susceptibility
tensor.

χzz =
∂Mz

∂Ha
|Ha=0 =

∂(Bx/µ0 −K1 ·My)/K2

∂Ha
=

1

µ0K2

∂Bx
∂Ha
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The χzz measured at different z positions of the sam-
ple should yield results that can be normalized by only
multiplicative factors (a simple calibration of the sensor
signal strength), i.e., the (1/χzz) plotted as a function
of temperature should all intercept at the same point on
the temperature axis to give the same Curie Weiss tem-
perature.

First, this clearly disagrees with the experimental ob-
servation. Fig. 8 shows how the temperature intercept of
the apparent inverse susceptibility Ha/VHall varies along
the sample in zero transverse magnetic field. Fig. 1
showed same information in non-zero field. In addition
to normalizing the values of the susceptibility, it is nec-
essary to shift the curves along the T axis to achieve
coincidence.

FIG. 8: Apparent susceptibility versus temperature at zero
transverse field for the three locations defined in Fig. 1. The
values are normalized by each location’s signal strength. The
corresponding temperature intercepts, TW , are noted in the
legend.

Second, we know from magnetostatics that the magne-
tization of a non-ellipsoidal sample is non-uniform, and
depends on both χ and sample shape [10, 11].

In contrast with global magnetization measurements,
where large local variations in demagnetization field tend
to average out, local magnetometry is sensitive to the
local variations, thereby complicating the interpretation
of the measurements. On the other hand, local sensors
provide an opportunity to study the detailed magnetic
response with good spatial resolution.

Appendix B: Magnetic field averaged over a
rectangular surface

This section is a revised version of Appendix A of
Pardo et al. Ref. [2] with the typos corrected and equa-
tions reformatted. Noted that these typos are only mis-
prints. The calculation in Ref. [2] used the correct equa-
tions.

We derive the magnetic field generated by a rectangu-
lar plate with uniform surface pole density σ and av-
eraged over a rectangular surface using the magnetic

Coulomb law

H(r) =
1

4π

∫
S′

σ(r′)(r− r′)

|r− r′|3
dS′ (B1)

We will only consider the field component perpendicu-
lar to the surface over which the average is made, accord-
ing to the needs in Eq. 18. We call the magnetic field
generated by the plate H(α) with α = x, y or z for the
plate to be perpendicular to the x, y or z direction, re-
spectively. The corresponding average over a rectangular
surface is 〈H(α)〉β with β = x, y, or z for the surface to
be perpendicular to the x, y or z direction, respectively.
H(x), H(y), and H(z) may be calculated by direct inte-

gration of the fields produced by point poles. Assuming
the plate to be centered at the origin with dimensions
2a(y) × 2b(z), 2a(z) × 2b(x), and 2a(x) × 2b(y) for the
cases of H(x), H(y), and H(z) respectively, we obtain:

H(x) =
σ

4πµ0
[F1(y, z, x; a, b)j

+ F1(z, y, x; b, a)k + F2(y, z, x; a, b)i] (B2)

H(y) =
σ

4πµ0
[F1(z, x, y; a, b)k

+ F1(x, z, y; b, a)i + F2(z, x, y; a, b)j] (B3)

H(z) =
σ

4πµ0
[F1(x, y, z; a, b)i

+ F1(y, x, z; b, a)j + F2(x, y, z; a, b)k] (B4)

where functions F1(u, v, w; t, d) and F2(u, v, w; t, d) are
defined as:

F1(u, v, w; t, d) =

+ f1(u+ t, v − d,w)− f1(u+ t, v + d,w)

+ f1(u− t, v + d,w)− f1(u− t, v − d,w) (B5)

F2(u, v, w; t, d) =

− f2(u+ t, v − d,w) + f2(u+ t, v + d,w)

− f2(u− t, v + d,w) + f2(u− t, v − d,w) (B6)

and f1(u′, v′, w′) and f2(u′, v′, w′) are given by

f1(u′, v′, w′) =arcsinh
v′√

u′2 + w′2
(B7)

f2(u′, v′, w′) = arctan
u′v′

w′
√
u′2 + v′2 + w′2

(B8)

Note that F2(z, x, y; a, b)j = F2(x, z, y; b, a)j. H(y) in the
original paper used the second one.. Also note that In
the paper, F2 has a typo: +f2(u− t, v + d,w) should be
−f2(u− t, v + d,w) or f2(t− u, v + d,w).

Once the field distribution is known, its average over
a rectangular surface may be deduced by surface inte-
gration again. Assuming the rectangular surface to be
centered at (x0, y0, z0) with dimensions 2a′(y) × 2b′(z),
2a′(z)×2b′(x), and 2a′(x)×2b′(y) for the cases of 〈H(α)〉x,
〈H(α)〉y, and 〈H(α)〉z (which is just the numerical value
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of the matrix element in Eq. 18), respectively, we obtain

〈H(x)
x 〉x =

σ

16µ0πa′b′
G2(y0, z0, x0; a, b, a′, b′) (B9)

〈H(x)
y 〉y =

σ

16µ0πa′b′
G1(y0, z0, x0; a, b, a′, b′) (B10)

〈H(x)
z 〉z =

σ

16µ0πa′b′
G1(z0, y0, x0; b, a, b′, a′) (B11)

〈H(y)
x 〉x =

σ

16µ0πa′b′
G1(x0, z0, y0; b, a, b′, a′) (B12)

〈H(y)
y 〉y =

σ

16µ0πa′b′
G2(z0, x0, y0; a, b, a′, b′) (B13)

〈H(y)
z 〉z =

σ

16µ0πa′b′
G1(z0, x0, y0; a, b, a′, b′) (B14)

〈H(z)
x 〉x =

σ

16µ0πa′b′
G1(x0, y0, z0; a, b, a′, b′) (B15)

〈H(z)
y 〉y =

σ

16µ0πa′b′
G1(y0, x0, z0; b, a, b′, a′) (B16)

〈H(z)
z 〉z =

σ

16µ0πa′b′
G2(x0, y0, z0; a, b, a′, b′) (B17)

where:

G1(u, v, w; t1, d1, t2, d2) =

g1(u, v + t2, w + d2; t1, d1)− g1(u, v − t2, w + d2, t1, d1)

− g1(u, v + t2, w − d2, t1, d1) + g1(u, v − t2, w − d2, t1, d1)
(B18)

G2(u, v, w; t1, d1, t2, d2) =

g2(u+ t2, v + d2, w; t1, d1)− g2(u+ t2, v − d2, w; t1, d1)

− g2(u− t2, v + d2, w; t1, d1) + g2(u− t2, v − d2, w; t1, d1)
(B19)

with functions g1(u′, v′, w′; t′, d′) and g2(u′, v′, w′; t′, d′)
defined as

g1(u′, v′, w′; t′, d′) = + f̃1(u′ + t′, v′ − d′, w′)
− f̃1(u′ + t′, v′ + d′, w′)

+ f̃1(u′ − t′, v′ + d′, w′)

− f̃1(u′ − t′, v′ − d′, w′) (B20)

g2(u′, v′, w′; t′, d′) =− f̃2(u′ + t′, v′ − d′, w′)
+ f̃2(u′ + t′, v′ + d′, w′)

− f̃2(u′ − t′, v′ + d′, w′)

+ f̃2(u′ − t′, v′ − d′, w′) (B21)

with

f̃1(u′′, v′′, w′′) =− u′′v′′ arctan
v′′w′′

u′′
√
u′′2 + v′′2 + w′′2

− w′′

2

√
u′′2 + v′′2 + w′′2

+ v′′w′′arcsinh
v′′√

u′′2 + w′′2

+
v′′2 − u′′2

2
arcsinh

w′′√
u′′2 + v′′2

(B22)

f̃2(u′′, v′′, w′′) =u′′v′′ arctan
u′′v′′

w′′
√
u′′2 + v′′2 + w′′2

− w′′
√
u′′2 + v′′2 + w′′2

+ u′′w′′arcsinh
u′′√

v′′2 + w′′2

+ v′′w′′arcsinh
v′′√

u′′2 + w′′2
(B23)

Note that G2(z0, x0, y0; a, b, a′, b′) =

G2(x0, z0, y0; b, a, b′, a′), in the reference [2], the 〈H(y)
y 〉y

term is set equal to the later form.

Appendix C: Anisotropy in Mn12−ac

Mn12-acetate is a strongly anisotropic system with a
c-axis in the easy direction, i.e., for the diagonal ele-
ments, χzz > χxx = χyy. The single ion anisotropy,

γ = χzz/χxx = ∆〈Sz〉
∆Hz

/∆〈Sx〉
∆H⊥

, can be estimated by the
single ion Hamiltonian:

Ĥ = −DS2
z −BS4

z − gµBHzSz + gµBH⊥Sx (C1)

where D = 0.548 K, B = 0.0012 K [9]. Figure 9 shows
the calculated γ versus temperature for different H⊥.
In the following procedures, we assume that the single
ion anisotropy is a good approximation of the crystal
anisotropy.

In the paper of Shiqi et al. [8], the crystal longitudinal
susceptibility χzz = ∂Mz/∂Hz|Hz=0 was measured in a
Quantum Design MPMS magnetometer for a set of crys-
tals with different aspect ratio. The apparent Weiss tem-
perature, TW obtained from the intercepts of χ−1 vs T
plotted against aspect ratio were extrapolated to infinite
aspect ratio to obtain the intrinsic Weiss temperature
for a very long, thin sample for which demagnetization
effects are negligible. Shiqi et al. also found that the
slope of the inverse susceptibility versus temperature be-
tween 3 K and 6 K is independent of sample aspect ratio.
Using the demag-corrected TW and slope, we can normal-
ize the parameter in the mean-field theory calculation by
Millis et al. [9] to obtain the temperature dependence
of the susceptibility in the absence of a transverse field,
as shown in Fig. 10 for the case of Mn12-ac. A linear
fit to the solid lines between 3 K and 6 K yields a slope
of ∼ 0.57 and a temperature intercept about ∼ 0.85 K,
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FIG. 9: Mn12-ac single ion anisotropy vs temperature under
different transverse fields

in agreement with the MPMS extrapolated value the for
infinite aspect ratio sample.

With both anisotropy and χzz in hand, we have the
full information for the susceptibility in zero transverse
field:

χ =

 χxx 0 0
0 χyy 0
0 0 χzz

 =

 1/γ 0 0
0 1/γ 0
0 0 1

χzz, (C2)

where χij = ∂Mi/∂Hj |Hj=0. By plugging this into Eq.
19, we can include the anisotropy when applying this
method to analyze the experiment data.

0 2 4 60

1

2

3

χ-1  (SI
 Un

it)

T  ( K )
FIG. 10: MPMS measurement results: circles denote Mn12-ac
data of a crystal of aspect ratio of c/a = 1.5; squares denote
data of a crystal of aspect ratio of c/a = 3.3. The dashed
lines are linear fits to the data and the black line is the result
of a mean-field.
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