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Abstract

Abstract
Understanding superconductivity on the nano-scale is of both fundamental

interest and practical importance. The fundamental interest aims at understanding many
novel phenomena manifested by nano-scale superconductors and not seen in the bulk.
The practical importance stems from the potential of nano-superconducting structures to
be used in innovative devices and systems including quantum computers. This work
focuses on investigation of the quantum behavior of nano-size superconducting single
loops and networks. It consists of four studies: (a) an experimental study of the current
dependence of the magnetoresistance (MR) oscillations in a linear array of Nb nano-loops
near the critical temperature, (b) an experimental study of the MR oscillations of Nb
single nano-loops measured at high currents close to the depairing current, (c) a search
for an experimental evidence for the theoretically predicted hc/e flux periodicity in nano
size aluminum superconducting networks - a work done in collaboration with Scheer’s
group in Konstanz university, Germany, (d) a theoretical study of fluxoids configurations
in finite superconducting networks. These studies revealed novel phenomena and insights

in the behavior of superconducting nano-loops and networks.

Our first study demonstrated current-induced SQUID behavior of
superconducting Nb nano-loops without Josephson junctions. MR measurements in such
loops showed that as the bias current increases, the parabolic Little-Parks
magnetoresistance oscillations become sinusoidal and eventually transform into
oscillations typical for a SQUID. We associated this phenomenon with the flux-induced
non-uniformity of the order parameter along a superconducting nano-ring, arising from
the superconducting leads (‘arms’) attached to it. Current enhanced phase slip rates at the
points with minimal order parameter create effective Josephson junctions in the ring,
switching it into a SQUID.

In the second study, we measured single granular Nb nano-rings in an extended
range of bias-currents. Our measurements revealed current-induced crossover between
two distinct quantum coherence effects. At low bias currents, Cooper-pairs coherence is
manifested by Little-Parks oscillations with flux periodicity of hc/2e. At high bias

currents, magnetoresistance oscillations with flux period of hc/e are observed and



Abstract

interpreted as Aharonov-Bohm oscillations, reflecting phase coherence of individual
quasi-particles. We explained these data viewing the ring as a chain of superconducting
grains weakly coupled by tunnel junctions. Low bias currents allow coherent tunneling of
Cooper pairs between the grains. Increasing the current above the critical current of all
the junctions creates a quasi-particles conduction channel along the ring, allowing for

quantum interference of quasi-particles.

The hc/2e magnetic-flux periodicity observed in the magnetoresistance of
superconducting rings has been considered as a hallmark for electronic pairing in
superconductors, manifesting the existence of Cooper pairs. However, several theoretical
works have shown that the existence of Cooper pairs does not necessarily imply an hc/2e
periodicity. For example, an hc/e flux periodicity was predicted for s-wave nano-rings
with size smaller than the coherence length, &p. In an attempt to confirm this prediction
experimentally, we combined efforts with Scheer’s group from Konstanz University in
fabrication and measurements of Al nano-networks. The choice of Al was based on its
large &p. In this third study, we participated in fabrication, measurements and
interpretation of the data. An indication for a crossover to hc/e periodicity was observed
in one sample in the waveform of the first period which was consistent with the
theoretical prediction. Observation of more than one period was impeded by the

relatively low value of the critical field in Al.

Fluxoid quantization effects have been previously studied extensively, both
theoretically and experimentally, in a variety of superconducting networks. However,
most of these studies focus on the phase boundary between the superconducting and the
normal states, paying less attention to the fluxoids configuration in the networks as a
function of the applied magnetic field. The limited number of studies considering
fluxoids configurations present results of experimentally measured or theoretically
calculated configurations in various networks, providing no intuitive understanding of the
underlying physics. In our fourth study, we theoretically analyzed fluxoids configurations
in superconducting finite networks using the “current squared” model (known as the “J?
model”). Our analysis yielded an Ising like expression for the total energy of the network

as a function of the loops vorticities and the applied magnetic field. This expression
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provided an intuitive understanding of the mechanism governing the fluxoid
configurations in finite networks. Specifically, it showed that fluxoids can be treated as
repulsively interacting objects driven toward the network center by the applied field.
Based on this analysis, we illustrated different configurations of fluxoids in different

types of networks by simulations.

Our studies shed light on the different mechanisms underlying the various flux
periodicities and fluxoid configurations in superconducting nano-loops and networks.
Understanding the physics behind these phenomena may lead to the development of new
concepts in the growing research area aiming at exploiting superconductors in nano-

circuits.
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1 Introduction
In this chapter, I explain briefly concepts that appear in the dissertation. In addition, |

mention relevant previous studies and emphasize our contribution to the discussed

subjects.

1.1 Fluxoid Quantization and Magnetoresistance Oscillations in
Superconducting Loops
London introduced the concept of fluxoid [1] in multiply connected superconductors
as the sum of the flux through a superconducting loop and the integral of the screening

currents over the circumference of the loop:

41 — >
' =P+ T%AZ]S dl (1)
c

where & is the magnetic flux through the loop, c is the speed of light and A is London’s
penetration depth. London’s calculations showed that in a multiply connected

superconductor, the fluxoid (and not the flux) is quantized:

hc
' =nd, = n— 2
n®g n2e (2)

where n is an integer, h is the Plank constant and 2e is the charge of a Cooper pair.
Note: all the calculations in the Introduction chapter were done in CGS units. In several

of our papers we used MKS units where &, = h/2e rather than ®, = hc/2e.

Measuring resistance in a superconducting state is usually possible only near the
superconductor’s critical temperature, current or field (T., I, H¢ in type |1
superconductors, He, in type Il superconductors) where the screening current density, J,
is extremely small. In this limit, the flux through the loop approximately equals to the
external magnetic flux and the supercurrent density in a superconducting loop with a
radius r and circumference L may be derived from Equations (1) and (2)

_ cCI>0< CD)_ cd, ( CI)) 3)
Js = g\ " o,) T sz \" T oy
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The integer number, n, is called the winding number, and it counts the number of
fluxoids trapped inside the loop. As is clear from Equation (3), the supercurrent density is
linear with the flux, exhibiting a periodic behavior with a period @, as described in
Figure 1(a). The periodic behavior is a consequence of the requirement for minimum

energy described below.

Due to the induced supercurrent, the kinetic energy of the circulating Cooper pairs

— which is proportional to the square of the supercurrent density — increases by

412 D2 d\?2 D2 D \?
PRy Sy A N A
C2 4‘T[A2L2 CDO 16”312T2 CDO

Figure 1(b) exhibits the parabolic dependence of E on & predicted by Equation (4). The

requirement for minimum energy determines the winding number n, as shown in Figure

1(c). This minimum energy is described by the solid red line in Figure 1(b).

Fluxoid quantization effects have been demonstrated in numerous experimental
works. Most relevant to this dissertation are magnetoresistance experiments which
showed oscillatory behavior with a period of ®,in single loops [2-11], networks [12-15],
arrays of Josephson junctions [16-18], and other complex structures [19, 20]. These
magnetoresistance oscillations are usually associated with the Little-Parks effect
discussed in Section 1.3 below. In the next Section 1.2 we discuss fluxoid quantization in

coupled loops and point to one of the topics that compose the present dissertation.
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Figure 1. (a) Supercurrent density in a superconducting loop for different winding numbers. (b)
Energy of a superconducting pairs corresponding to the square of the supercurrent density for
different winding numbers is plotted as dotted lines. (c) Population of fluxons in a
superconducting loop, as a function of magnetic flux piercing the loop, expressed in units of the

flux quantum.

1.2 Fluxoid Quantization in Coupled Loops

Fluxoid quantization effects have been studied extensively, both theoretically and
experimentally, in a variety of superconducting networks [7, 12, 13, 21-32]. However,
most of these studies focus on the phase boundary between the superconducting and the
normal states, paying less attention to the fluxoids configuration in the networks as a
function of the applied magnetic field. The limited number of studies considering
fluxoids configurations present results of experimentally measured or theoretically
calculated configurations in various networks, providing no intuitive understanding of the
underlying physics [13, 32-34]. In this dissertation (Chapters 3.1 and 3.2) we elucidated
the mechanism governing the fluxoid configuration in finite superconducting networks as

a function of the applied field.
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Figure 2. A superconducting ladder with N cells/loops, and sides’ ratio of 1:1.

In Equation (1) we introduced the fluxoid in a single superconducting loop. When
two loops have a common side, these loops are effectively coupled. In Chapter 33.1 we
focused on a 1D finite network (‘ladder”) illustrated in Figure 2. Our analysis of such
superconducting ladders yielded an Ising-like expression for the total energy of the
ladders as a function of the loops vorticities and the applied magnetic field. This
expression shows that fluxoids can be treated as repulsively interacting objects driven
towards the ladder center by the applied field. A ‘short range’ and a ‘long range’
interactions give rise to remarkably different fluxoid configurations that are illustrated by
simulations. Some of these configurations include the same number of fluxoids arranged
in different positions, some of which are incommensurate to the ladder symmetry. These
results are demonstrated in Figure 3. The figure describes the fluxoids arrangements as a
function of field for ladders with 7, 8 and 9 loops. An empty loop is colored blue, and
occupied loop is colored yellow or green. The green color indicates degenerated
configurations which are incommensurate with the symmetry of the ladder. The ladders
with 7 and 9 loops demonstrate the general rule that when the number of loops is odd, the
first fluxoid always occupies the loop at the ladder’s center. In ladders with an even
number of loops, the first fluxoid occupies a degenerated state on either side of the
center, as demonstrated by the ladder with 8 loops. As the field increases, a second
fluxoid enters the ladder, pushing the first one out of its position and both fluxoids
arrange themselves in an optimum configuration, keeping apart from each other and away
from the network edges. In the ladder with 9 loops, this configuration conforms the
symmetry of the ladder, however, this is not the case in the ladders with 7 and 8 elements.
As more fluxoids enter the ladder with increasing field, rearrangement of fluxoids

continues until the last fluxoid enters the ladder’s center completing one period in which

4
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each loop is occupied with one fluxoid. Occupation of the loops in the following periods

follows the same pattern.

o/

Element number

Figure 3. Fluxoid configuration as a function of magnetic flux in ladders with 7, 8 and 9 loops, in
the first period. An empty loop is colored dark blue, and occupied loop is colored yellow or
green. The green color indicates degenerated configurations which are incommensurate with the

symmetry of the ladder.

The conclusions drawn from the analysis for 1D networks are also valid for 2D
networks. Namely, fluxoids in 2D networks repel each other and are driven to the center
by the applied field. This was demonstrated in Chapter 3.2 for small (3x3) networks, as
shown here in Figure 4. The figure shows that the first fluxoid appears in the central loop
of the network, as in a ladder. Note that the number of different configurations (11)
exceeds the number of loops in the network, due to rearrangement of the same number of
fluxoids as the field increases. This situation occurs in configurations of 3 and 6 fluxoids.
Among the 11 different configurations, there are 6 degenerated states that are

incommensurate to the network symmetry (marked in green in Figure 4).

This theoretical study gives a strong motivation for future experimental work. The
fluxoid occupation in a ladder can be verified using, e.g., a scanning SQUID. Since the
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scanning SQUID’s measurements are Very sensitive to magnetic field, it can measure the

currents induced in the sides of the loops and detect the position of fluxoids in the ladder.

/Dy = 0 0.16 0.30 0.32 0.37

Figure 4. Fluxoid configurations in 3x3 square network calculated in the framework of the 'J2

model’. An empty loop is colored dark blue, and occupied loop is colored yellow or green. The
green color indicates degenerated configurations which are incommensurate with the symmetry
of the ladder.

1.3 The Little-Parks Effect

The additional energy, Ey, of the fluxoid’s current defined in (4) suppresses the
critical temperature, T, periodically. This effect was first observed experimentally by
Little and Parks [35, 36]. They demonstrated that a thin-walled superconducting tin
cylinder pierced by a magnetic flux shows magnetoresistance oscillations with a period
equals to the superconducting flux quantum @, = hc/2e (see Figure 5(a)). Little and

Parks associated the resistance oscillations AR(H) with periodic changes in AT, (Figure

5(b)) in the superconducting transition temperature: AR = AT, Z—:. The amplitude of the
2
oscillations, AT,, scales with (i—") , Where &, is the zero-temperature coherence length,

and r the radius of the cylinder.
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(b)

$40

gl————————
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Figure 5. (a) Resistance of the tin cylinder as function of magnetic flux depicted from the
original paper by Little and Parks [35] . (b) Schematic plot of resistance vs. temperature:
interpretation of the change in T, reflected as change in the resistance.

The Little-Parks magnetoresistance oscillations are usually demonstrated with
relatively small bias currents. The bias current, Iy, contributes a constant term «I,2, to the
total energy and it is therefore expected that the waveform of the magnetoresistance
oscillations should not be affected by the current. In reality, however, the situation is
much different as elaborated on in Sections 1.4 and 1.5 below and in Chapters 3.3, 3.5
and 3.6. For example, even at relatively small bias currents, the observed waveform of
the magnetoresistance oscillations deviates quite frequently from the predicted parabolic
behavior, Equation (4), exhibiting sinusoidal-like oscillations, see e.g.[28, 37, 38]. Such
deviations were related to a distribution of the ratio £/r in a wide ring [37] (¢ is the
coherence length and r is the radius of the ring), or to a size distribution of rings in a
network [28]. In Chapter 3.4 we propose an alternative explanation associated with the
existence of Josephson junctions (JJ) in the ring. The existence of such junctions is highly
probable in superconducting nano-rings with superconducting leads (‘arms’) attached to

them, as elaborated in the next Section (Section 1.4).



Chapter 1

1.4 Nano-Rings with ‘Arms’

De Gennes [39] considered a superconducting ‘lasso’, namely a superconducting
ring (radius R) with an attached arm (length L) (Figure 6(a)). To obtain the order
parameter of the lasso under an external field H perpendicular to the ring, he used the

linearized Ginzburg-Landau equation (LGL),

A(s) =0, (5)

Yos T T n gz
where s is a coordinate along the ring’s rim, A is the superconducor’s order parameter and

)2 ACs) —

A|| is the magnetic vector potential parallel to the superconducting wires composing the
loop. At a ‘node’, namely where the arm and the ring are connected, the order parameter

satisfies the following conditions

> (2 4+ 122000 a(s,) = 6

14
where the summation is taken over superconductor wires (p) that are connected to the

node. The gauge of the vector potential is taken as 4;| = HZ—R on the ring and A;; = 0 on

the arm.

Strong link

Antipodal
points

Strong link

Figure 6. () An illustration of a superconducting ‘lasso’: a ring with radius R attached with an

arm with length of L. (b) An illustration of a superconducting ring with two arms.

From Equation (5), the spatial dependence of the order parameter on the arm is:

AG) = B % )
3

where A, is the order parameter at the node and x the coordinate from the endpoint of the

arm. On the ring, the order parameter is:
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.S © .S .S
A(s) = e 'R®o (ael? + ﬁe_l?). (8)
Here @ is the magnetic flux through the ring and «, B are coefficients to be determined from

the boundary conditions:
A(0) = a + B = A,, (9)
_2TR® 2mR\  _27R
A(s=2nR)=e R ®o <2ai sin (T) +e ¢ ) = A,, (10)

From Equations (9) and (10) we can derive the coefficients @ and (= A, — a):

izna  -i2ER
e Po—e ¢
. . (2R .
2151n(———)
¢

Since not only the order parameter but also its derivative has to be continuous along the rim, we

a= (11)

should solve the following equation as well:

=0. (12)

S=2TR

(%A(x))t:L - (%A(s) + i%%A@))

Equations (9), (10) and (12) form a set of coupled equations. For non-trivial solutions of

+ (% A(s) + i%%A(s))
s=0

{a, B, Ay}, () should satisfy the following transcendental equation:

2\ = Ry _1g R L 13

cos (27‘[ %) = cos (27‘[ f) > sin (Zn E) tan (f) (13)
Equation (8) for the order parameter contains the coefficients a(®),s(P) and the
parameter £(®) as a function of the magnetic flux through the ring. When analyzing this
solution, de-Gennes found that the order parameter in the antipodal point of the ring,

A(s = mR) (see Figure 6(a)), goes to 0 as & approaches &, /2.

Alexander [40] extended this work of de-Gennes to the general case of a
superconducting ring with multiple arms. In the special case of two arms (see Figure
6(b)), Alexander found that in the mid-points between the arms (marked as anti-podal
points in Figure 6(b)), the order parameter decreases as @ approaches ®,/2, reaching a

minimum (though a non-zero value).

Based on de-Gennes and Alexander’s calculations, Fink et al.[41] suggested that
the minimum order parameter in the antipodal points should effectively create Josephson

junctions. Therefore, a nano-ring with two arms should behave as a SQUID. In the

9



Chapter 1

present dissertation (Chapter 3.3) we provide an experimental demonstration of such a
SQUID behavior. Our magnetoresistance measurements showed a current induced
crossover from the parabolic Little-Parks oscillations at low bias currents into |sinm @/
d,| oscillations typical of a SQUID behavior. This crossover is demonstrated in Figure 7.
The formation of a SQUID behavior is attributed to the combined effects of current
induced phase slips and non-uniform order parameter along the loop caused by the

superconducting arms.

Future experiments using tunnel junctions connected to a superconducting loop
with one and two arms can verify the above model and give a fundamental physical

understanding for the mechanism governing this current-induced effect.

1IN A > 0 ' g
\/\\/\/\/\/\/\/l LA

“3 -2 “1 1 2 3

0
P/ <I>0
Figure 7. Magnetoresistance of a single ring for different bias currents. Measurements performed
at T = 7.1 K with currents between 1 pA and 4 pA are described as a function of the magnetic
flux, @, normalized to the quantum flux, ®,, taking the ring area as 1.2:10 " cm?. The guide to the
eye solid curves through the data points describe classical Little-Parks parabolic oscillations (1
nA curve), Little-Parks sinusoidal oscillations in a SQUID (2 and 3 pA curves) and typical
SQUID oscillations (4 pA curve).

10
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1.5 hc/e-Periodicity in Superconducting Loops
In a multiply connected superconductor, the fluxoid is quantized in units of

®, = h/2e, where the 2e is a hallmark of electron pairing in the superconductor.

Theoretical studies [42-47] have predicted that in superconducting nano-loops
with a length-scale a < & the dominant periodicity is hc/e rather than hc/2e. The same
theories predict that for high-Tc superconductors (HTS) with d-wave symmetry, the hc/e
periodicity is also expected for a = &. Recent experiments [28, 37] failed to identify the
hc/e component in HTS. We associated this failure with the small coherence length, &,
(~2 nm) typical to HTS resulting in a >> & rather than the required a = &. To bypass this
problem we focused on aluminum, a low-T, superconductor with a relatively large bulk
coherence length (§ = 1.6 um). We note, however, that in nanostructures made of thin
films the coherence length is reduced due to the finite mean free path, and simultaneously
the penetration depth A, is enhanced. Typical values of & in these aluminum
nanostructures are in the range of 100 to 200 nm. Close to Tc, the coherence length §(T)
diverges, allowing in principle to meet the criterion a < & in nanostructures with
circumferences in the order of several hundred nanometres. On the other hand, the critical
field of bulk Al amounts to only 10 mT, giving a strong limitation for the number of
Little-Parks oscillations (LPO) that can be observed. Taking these considerations
together, we fabricated aluminum ‘double-networks’ [28] and measured their
magnetoresistance. One of the intriguing findings of these measurements is described in
Figure 8(a) and Figure 8(b). In Figure 8(a) we plotted the differential MR (differential
resistance vs. magnetic field) of an aluminum double network near T, with bias currents
of 0 and 2.1 pA. Figure 8(b) predicts the total energy (E(®)-E(0))/E(0) for a square loop.
There is a clear difference between states with an even and an odd number of winding
number, q, reflected in the deformation of the parabola in g=0. The overall flux
periodicity for E is hc/e. The mapping between the energy to the resistance is through a
monotonic function (usually R oc e~ £/k8T [48]), thus maintaining the overall shape of the
function. The similarity between the experimental plots and the theoretical plot is clear:
the minima in the odd and even winding number have different shapes. We elaborate on

consequences of these measurements in Chapter 3.5.

11
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Figure 8. (a) Comparison of differential magnetoresistance of an aluminum double network with
zero DC bias current and with 2.1 pA DC bias current close to T, (b) Theoretical plot of energy
vs. flux for a superconducting loop with a < &, showing the modulation of the odd Little-Parks

oscillations [44]. In the right figure @ is described in units of @, = hc/e.

1.6 The Aharonov-Bohm Effect

Magnetoresistance oscillations with hc/e flux periodicity are observed in
mesoscopic metallic rings [49], demonstrating the Aharonov-Bohm (AB) effect [50] in
solid state systems. In the AB effect, an electron wavepacket is coherently split into two
wavepackets passing opposing sides of the ring. The wavepackets accumulate phase
shifts of opposite signs along their paths. The two packets are recombined, and the
resulting interference signal depends on the total magnetic flux enclosed by the two

paths. The AB phase shift accumulated along points a and b is

¢ ("a.q (14)
@——Efa ax

where A is the vector potential B = VV X A. For the effect to be experimentally observed,
it is essential that the ring size will be of the order or smaller than the ‘phase coherent
length’, Ly = \/D_r(p [51], where D is the diffusion coefficient and 74 is the time between
inelastic collisions. Lg at low temperatures is, typically, of order several micrometers,

hence the need for a mesoscopic ring.
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s nnfinn

VAH [ 1T ]

Figure 9. (a) Magnetoresistance of Au ring measured at T = 10 mK. (b) Fourier power spectrum
in arbitrary units containing peaks at hc/e (and hc/2e). The inset is photograph of the measured
ring. The inside diameter of the loop is 784 nm, and the width of the wires is 41 nm. From Webb
et al. [49].

Webb et al. [49] were the first to report clear Aharonov-Bohm oscillations in
mesoscopic metallic rings (Figure 9). Since then, the effect was demonstrated not only in

metals [52] but also in many other non-metallic systems, see e.g. [53-60].

In this dissertation (Chapter 3.6 below), we demonstrate AB effect resulting from
phase coherence of quasi-particles in a granular superconducting ring, essentially
composed of a chain of superconducting Josephson junctions. To the best of our
knowledge, this is the first demonstration of phase coherence in such a system. Moreover,
the data indicates an enhancement of the AB effect as compared to the effect in metallic
rings. Interestingly, the effect was observed only at high bias currents, see Figure 10. At
low bias the magnetoresistance exhibits the LP effect with hc/2e flux periodicity. A
crossover to the AB effect, with hc/e periodicity, is observed at relatively large currents
in a range below the depairing current. At these high currents the AB effect arises from
phase coherence of quasi-particles flowing in the resistive channel created by the

Josephson junctions in the voltage state.
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Figure 10. Magnetoresistance oscillations in the Nb ring at 3.5 K, for bias currents of 4 and 90

HA, lower and upper panels, respectively. Note the doubling of the flux periodicity from 105 to
210 Oe, corresponding to crossover of the flux periodicity from hc/2e to hc/e, respectively.
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2 Experimental Methods
The experimental work described in this dissertation required fabrication of nano-

structures, material characterization and transport measurements. These requirements are
challenging when entering the nano-scale domain. Nano-scale features are extremely
fragile and aspect ratio between width and thickness plays a significant role. The relevant

methods are briefly described in the following Sections.
2.1 Fabrication

2.1.1 Magnetron Sputtering

Sputtering is a physical vapor deposition (PVD) technique in which plasma ions
(usually Argon) are accelerated towards a negatively biased desired material which called
target. Under a certain pressure of gas, the atoms collide, and release electrons, then the
ions are accelerated while during the acceleration they ionized more atoms causing
avalanches and amplifying the plasma. When the ions hit the target, they release
aggregates of multiple atoms from the target, those aggregates are sputtered into all
directions, and to the substrate holder that usually is localized few cm away from the
target. A set of magnets is set under the target in order to focus the ions to the target.
There are 2 main modes, DC and AC sputtering, used depending on the target material,
whether it conducts or insulates. Since we deposit conducting metals, the target is biased

with a DC voltage, which can enable a high deposition rate.

Sputter deposition is a well-established technique for deposition of high quality
transition metal oxides. The desired phase can be deposited directly from a target with the
correct stoichiometric ratio or can be achieved by reactive sputtering, where reactive
gases (such as oxygen or nitrogen) are added during the deposition. Reactive processes
are, in general, harder to control, since they include "target poisoning"”, a phenomenon
that arises from the formation of a compound layer on the target surface, which is a result
of chemical reaction of the reactive gas with the surface of the sputtering target. The
poisoning can change the deposition rate, which can increase the poisoning further.
Hence, for efficient reactive sputtering it is important to find a set of parameters that is

relatively stable to small perturbations, and that results in a reproducible sample quality.
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We sputtered niobium on SiO, substrate, in room temperature. We used a 99.95%
purity Nb target. Working pressure was 2 mTorr, flowing 28 SCCM of argon to the
chamber. Deposition rate was ~1.8 A/s achieving T. of 7.4K. Since this growth was not
done on epitaxial substrate, XRD measurements characterized the films as

polycrystalline.

We also deposited NbN. We found a good protocol for our NobN 5nm thin film: 1)
Heat the chamber with the sample to 800°C in high vacuum, and leave it for two hours.
2) Lower the temperature to 750°C and leave it for two hours. 3) Begin sputtering at 2
mTorr. Since the target is Nb 99.95% pure, we need nitrogen atmosphere to make the
sputtered Nb a thin NbN film. We used 26.1 SCCM of argon and 2.9 SCCM of N, which
gives us partial pressure of 10% nitrogen. Sputtering rate was 0.9 A/s. This method
combined with R-cut sapphire as a substrate helped us achieving amorphic stoichiometry.

T, of this extremely thin sample was 11.5 K.

2.1.2 Nano-Patterning

A high resolution electron beam (e-beam) lithography system was exploited for
nano-patterning the films. The e-beam system installed at the Bar-llan Institute of
Nanotechnology and Advanced Materials is the CRESTEC-9000C. The electron beam
lithography is based on ‘writing' with a focused electron beam in a thin layer of a material
sensitive to the accelerated electrons (electron beam resist). The main advantage of
electron beam lithography is that it is a very effective way to go beyond the diffraction
limit of light and make features of few tens of nanometers or even less. In some cases, the
exposed parts of the resist become highly soluble and can be removed by liquid
developers (positive tone resists). In other cases, the exposed parts of the resist become
unsolvable and the un-exposed parts can be removed by developers (negative tone

resists).

We used Poly(methyl methacrylate) (PMMA) as a negative tone resist. Although,
in typical conditions PMMA functions as a positive resist, at increased exposure times

PMMA may crosslink and become unsolvable in typical organic developers [61]. We
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observed that a cross-linked negative tone PMMA ensures a much higher contrast,
resolution, and aspect ratio. In a layer of ~70 nm, we could reach a feature size of 17 nm
with a gap 7nm. Cross-linked PMMA are also very stable during ion milling, probably
due to the enhanced stiffness of the crosslinked polymer. Step 1: A layer of PMMA resist
was spun-off on top of film. We used AR-P which is a special kind of PMMA with a
molecular weight of 200,000 to produce a film of ~120 nm after spincoating at the speed
of 5,000 RPM. The AR-P 200K gave the best results in terms of contrast, resolution,
aspect ratio and resistant to the destructive chlorine etching process (discussed in
Chapter 2.1.3). The sample with the resist layer was 'baked' on a hot plate for 2 min at
180 °C. Step 2: Then the desired patterns of the loops were exposed using a CRESTEC
Cable-9000C high resolution e-beam lithography system with an acceleration voltage of
50 keV and typical beam current of 500 pA. Step 3: We used relatively high doses of
electron beam exposure to produce a negative tone image of the loops and contacts
design in the layer of resist. Using high resolution of 240,000 dots in a field of 600 um
makes the electron beam to divert 2.5 nm each step (grid spacing is 2.5 nm). Since the
spot size of the beam is larger than the grid size (distance between adjacent grid cells),
each grid cell has an effective exposure which is ~6.8 times larger than using sparse
dots/low resolution. This method reduced the exposure time by a factor of 2. Step 4:
Development of the exposed sample was done in the standard method: 40-60 seconds in
MIBK (methyl isobutyl ketone), diluted 3:1 with Isopropyl alcohol, then 20 seconds in
IPA (Isopropyl alcohol) which is the stopper for the MIBK developer. In this step, parts
of the resist near the negative unsolvable (cross-linked) parts are removed. Step 5: To
remove the remains of the unexposed parts of the resist, we developed the samples for 4-
10 minutes in acetone (the longer the better), using IPA as a stopper for at least 1 minute.
This 'negative’ resist pattern served as a mask for transferring the pattern to the

superconducting film by chemical etching.

2.1.3 Reactive Ion Etching

Etching was done using an RIE/ICP (Reactive lon Etching / Inductively Coupled
Plasma) system. We used an interferometer to determine the etching state of the sample.
We stopped the etching two seconds after the interferometer indicated that the niobium
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layer was fully etched. A mixture of Cl, and BCI; produced the finest results thus used

for the main part of my work.

Etching was performed in room temperature, under a pressure of 5 mTorr and a
gas flow of 20 SCCM for the Cl, and 5 SCCM for the BCl3. RIE Bias forward power was
50W. No ICP was used. We did use a stabilization step before the etching step, but its
parameters did not affect the etching procedure. Etching was not linear and an
interferometer was used to determine when the etching step was done. A long

stabilization step allowed us to calibrate the interferometer for each sample we etched.

2.2 Transport Measurements

We measured the resistance of the different rings as a function of temperature,
magnetic field and bias currents. The measurements were done using a commercial
Physical Properties Measurement System (PPMS, Quantum Design Inc.) that provides a
temperature range of 2-400 K and magnetic field up to 9 T to measure Rvs. Tand R vs H
curves. To communicate, program, automate and control the system, we used MATLAB

computing environment.

The aluminum network measurements were performed at Konstanz University in
a HelioxVL helium-3 cryostats from Oxford Instruments. Four-point resistance
measurements were performed with a bias current below 500 nA, using SR830 lock-in
amplifiers. A Yokogawa 7651 served as the DC voltage and current bias. A custom-built
adder combined the DC signal from the Yokogawa and the AC signal of 4 mV at 117.17
Hz, which was then fed into the cryostat on the bias input lead. The signal passed through
the sample and was amplified by a Femto DLPCA-200 current amplifier, from which it
was then read by one of the lock-in amplifiers. To accomplish the four-point
measurements, two additional electrical leads, above and below the sample in the
electrical potential landscape, lead to a Femto DLPVA-100 voltage amplifier, from which
the voltage signal was then fed into the other lock-in amplifier. The outputs from both
lock-in amplifiers were then fed into an ADWin Gold data acquisition system, where they

were digitized and passed on to the computer to be saved.
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The Heliox cryostats each came outfitted with an Allen-Bradley thermal element
at the helium-3 sorption pump, two 2.2 kW (RuO;) thermal elements at the 1.5 K plate
and helium-3 pot, and heaters at the helium-3 sorption pump and the helium-3 pot. These
five elements were controlled through the Oxford Instruments ITC 503 temperature

controllers that were delivered with each cryostat.

2.2.1 Resistance Measurements
Resistivity measurements were conducted using 4-probe and delta mode method
to eliminate contact resistance and parasitic voltage offset.

2.2.2 I-V Characteristics Measurements

I-V characteristics was measured using 4-probe in 5 quarters: measuring the
voltage while increasing the bias current to the maximum current, then decreasing the
bias current to the negative minimum current, and then increasing the current again to the
maximum current. This method was used to detect if hysteresis in the 1-V characteristics

exists.
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3 Publications
The following 6 publications summarize the research work done in the framework of this

dissertation:

3.1

3.2

3.3

3.4

3.5

3.6
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Omri J. Sharon, Noam Haham, Avner A. Shaulov, and Yosef Yeshurun
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Omri J. Sharon, Noam Haham, Avner Shaulov and Yosef Yeshurun
Journal of Physics: Conf. Series 969 012048-012054, (2018).

Current-induced SQUID behavior of superconducting Nb nano-rings

Omri J. Sharon, Avner Shaulov, Jorge Berger, Amos Sharoni, and Yosef Yeshurun
Scientific Reports 6, 28320-28325 (2016).

Little-Parks oscillations in superconducting ring with Josephson junctions

Omri J. Sharon, Amos Sharoni, Jorge Berger, Avner Shaulov, and Yosef Yeshurun
Journal of Physics: Conf. Series 969 012047-012053, (2018).

Flux-periodicity crossover from h/2e to h/e in aluminium nano-loops

C. Espy, O. J. Sharon, J. Braun, R. Garreis, F. Strigl, A. Shaulov, P. Leiderer, E. Scheer,
Y. Yeshurun
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Omri J. Sharon, Avner Shaulov, Jorge Berger, Amos Sharoni, Richard Berkovits and
Yosef Yeshurun
Nano Letters 18, 78517855 (2018).
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The first two publications establish a solid ground for understanding the interaction
between fluxoids and the physics behind their arrangements in superconducting

networks.

The third and fourth publications reveal novel phenomena associated with the
influence of bias current on the behavior of superconducting nano-loops.

The last two report on experimental discovery of hc/e (rather than the conventional
hc/2e) flux periodicity in nano- and meso-scopic superconducting loops, induced by size-

effect and bias-current, respectively.
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3.1 Fluxoids configurations in finite superconducting networks

Omri J. Sharon, Noam Haham, Avner A. Shaulov, and Yosef Yeshurun
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Analysis of superconducting ladders consisting of rectangular loops, yields an Ising like expression for
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1. Introduction

Macroscopic quantum phenomena continue to attract attention
since the early days of quantum mechanics [1]. A prominent exam-
ple of a macroscopic quantum phenomenon is exhibited by loops
and networks made of thin superconducting wires. The quantity
quantized in these multiply-connected systems is the fluxoid de-

fined as: (4w A2/c) §J- di + ¢, where Jis the density of the shield-
ing current in a loop, A is the penetration depth, and ¢ is the mag-
netic flux threading the loop. In each and every loop of a network
the fluxoid must be an integer multiple of the flux quantum ¢
[2]. The requirement of minimum energy determines the number
and arrangement of fluxoids in the network giving rise to periodic
changes in the energy as a function of the external field.

Fluxoid quantization effects have been studied extensively, both
theoretically and experimentally, in a variety of superconducting
networks [3-17]. However, most of these studies focus on the
phase boundary between the superconducting and the normal
states, paying less attention to the fluxoids configuration in the
networks as a function of the applied magnetic field. The limited
number of studies considering fluxoids configurations present re-
sults of experimentally measured or theoretically calculated con-
figurations in various networks, providing no intuitive understand-
ing of the underlying physics [6,17-19]. The purpose of the present
work is to elucidate the mechanism governing the fluxoid configu-
ration in finite superconducting networks as a function of the ap-
plied field. Understanding the physics behind the different fluxoid
configurations may lead to the development of new concepts in

* Corresponding author.
E-mail address: yeshurun@mail.biu.ac.il (Y. Yeshurun).

https://doi.org/10.1016/j.physc.2017.10.007
0921-4534/© 2017 Elsevier B.V. All rights reserved.

‘fluxonics’ - a growing research area aiming at exploiting super-
conductors in digital circuits [20-23].

We theoretically analyze the simplest case of a superconducting
1D network (‘ladder’) using the “current squared” model (known
as the “J2 model”) [6,18,24]. In this model the kinetic energy of the
network is calculated as the sum of the squared currents over all
the network wires, and the number and arrangement of the flux-
oids are determined by the requirement of minimum energy. Our
analysis yields an Ising like expression for the total energy of the
network as a function of the loops’ vorticities and the applied mag-
netic field. This expression shows that fluxoids can be treated as
repulsively interacting objects subjected to an additional interac-
tion with the applied field. The field tends to direct the fluxoids
towards the network center while fluxoids repel each other tend-
ing to keep themselves apart. Competition between these two in-
teractions determines the equilibrium arrangement of fluxoids in
the network as a function of the applied field.

We distinguish between three types of ladders depending on
the ratio | between the loops’ length and the common width of
adjacent loops in the ladder. For [ >>1, the interaction between
fluxoids is negligible and the ladder can essentially be considered
as a collection of separate, non-interacting loops. As the ratio [
decreases toward 1, ‘short range’ repulsive interactions arise, de-
creasing exponentially with the relative positions of the fluxoids.
Ladders with [ <<1 are characterized by a ‘long range’ interaction,
which depends on the product of the fluxoids’ locations relative to
the ladder’s edges. The different configurations of fluxoids in these
different types of ladders are illustrated by simulations.
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Fig. 1. Finite rectangular ladder consisting of N loops.
2. Analysis N N
~EEnb-2)(-8)-
Consider a superconducting ladder of finite length, consisting of i=1 j=1 0 0
N rectangular loops of unit width and lengthl, as shown in Fig. 1. 2
The fluxoid quantization equation for loopi reads: = ZBU (ninj _ 2% n; + (¢) ) (7)
— 0 0
¢ ij
20+ D) —Jio1 —Jip1 =10 — —, 1 . . .
I+ Dfi=Jia —Jia = oo (1) The above expression for the total energy, E, is reminiscent of

where n;is the vorticity of the loop i, ¢ is the flux threading this
loop, and by definition J; = 0 for i <0 ori > N. For simplicity, the
coefficient 4 A2/c is taken as 1. According to Eq. (1), the set of the
fluxoid quantization equations for all the loops can be written as a
matrix equation:

—

P ¢
A J=n-——,
J=" %
where the elements of the matrix A:
Aij =2+ 1)8;j — 8 j-1 — i ji1.

d; j being the Kronecker 4.
The current vector J can be calculated from Eq. (2) by inver-

sion:
- @
A (n ¢o)

Denoting the matrix A1 as B, Eq. (3) can be written as a set of
equations:

o ¢
Ji = le:Bij(nj_ ¢0>, i=1.N

Using the J2 model, knowledge of J; allows calculation of the en-
ergy E; of the loop i:

1 1 1 1
E; =212 + 5 Ui ~Ji)?+ 5 Ui —Ji)? + 511251.1' + EJI%ISNJ

(2)

(3)

(4)

1 1
=SilQI+ 1) —Jii1 = Jia] + 51;2,1 +5

and the total energy E of the network:

1 1
,-2+1 + 511251.:' + EJI%/(SNJ,

N

N 1 1
E=YE =3 (it 20+ D5 i )+ 5020+ 50 ]
i=1 i=1
1 1
+oli+ 50 )

N
Using Eq. (1) and realizing that > {-J2 + 3/2, + 3/2,} + 33 +
i=1

3J2 =0, Eq. (5) becomes

N
X e
E_;J,(n, %).

Inserting J; from Eq. (4) yields

(6)

the Ising model for the energy of a spin configuration, having
the form " J;;S;S; - w>_h;S; [25]; nj, and By playing the role of
ij J

the Ising variable S; and the exchange energy J;, respectively. The

first term on the right hand side of Eq. (7), (3_ Bjjnin;), represents
ij

the interaction between fluxoids, including the self-interactions

3" B;in;2. The second term (—24% > n;B;;) expresses the interaction

i ij

between the fluxoids and the effective magnetic field. The third

term, (d%)2 ZB,-]-, is a constant, independent of the vorticities and
ij

thus may be ignored.
For the matrix A given in Eq. (2), B=A-1 is a symmetric matrix
with elements [26]:

N+1-j N+1-j
-, )

(V]i - Vzl) (Vl
=) (' -y

where y1,=(10+1) £/ + 1)%2 — 1. Due to the symmetry of B, Bj
for i>j can be calculated as Bj; using Eq. (4). Defining n =y5/y 1,

and C=1/(1-1n)(1 —nN+t1), Eq. (8) takes the form
(1-n)(1- 9

Y1, Y2, n and C are geometrical factors that depend on the ele-
ment length L. These dependencies are shown in Fig. 2.

As clarified below, | determines the degree of coupling between
the loops. For I>> 1, the coupling is weak, and for [ « 1 the coupling
is strong. These two cases differ significantly from each other and
from the intermediate case [z 1, on which interest is commonly
focused. In the following we discuss these three limiting cases:

Case 1: I’>> 1. In this case,C— 1, n— 0, and the off-diagonal el-
ements of the matrix B become negligible as compared to the di-
agonal elements. Thus, the dependence of J; on the vorticities of
loops, other than the loop i, can be neglected (see Eq. 4). In other
words, the coupling between the loops is weak and the energy of
the ladder is approximately the sum of the energies of separate
loops:

N 2
_ 1 2 9 (2
E=y, l;(n, 2(}50 n,+(¢0) )

Consequently, as the field increases, all the loops are occupied
with fluxoids essentially in unison.

Case 2: 12 1. In this case,n«1, C~1 and y; approximately
equals to the circumference 2(I + 1) of a single loop. Thus, it is
justified to neglect in Eq. (9) powers of n as compared to 1, and ap-
proximate B; as ;/1‘(“‘””). In this approximation, Eq. (7) becomes

B , fori<j

(8)

i =

ij-1

Bij = Cy, n”“’f), fori < j.

(10)
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Fig. 2. The geometrical factors y, ¥, C and 7 as a function of the ratio | between
the loop length and the common width of adjacent loops.

2
E = Zyi(liinD nn; — Zg n; + (¢> . (11)
7 7 "o $o

The above expression shows that fluxoids can be treated as re-
pulsively interacting objects, with interaction energy that decreases
exponentially with their separation in the ladder. In order to min-
imize the total energy, the repulsive interaction between fluxoids
tends to keep them away from each other. The interaction between
the fluxoids and the effective magnetic field, represented by the
second term in Eq. (11), (—24% ini yf(l';jl”) ), reduces the
energy depending on the fluxoids arrangement within the network.
It can be shown that the geometric progression factor in this term:
=y D o cosh(In(yy) (¥4 — 1)), which is minimal at the
center of the ladder (i = %). Thus, to minimize the total energy,

the interaction with the field, tends to drive the fluxoids away from
the network edges towards the network’s center. As mentioned
above, the third term in Eq. (8), ((15%)2 >ij y{(“*”“), is indepen-
dent of the vorticities and thus can be ignored. We conclude that
while the external magnetic field tends to assemble the fluxoids
near the ladder center, the fluxoids repel each other tending to
keep themselves apart. Competition between these two opposite
interactions determines the equilibrium arrangement of fluxoids in
the network as a function of the applied field. The self-interaction
term has no role as it has no spatial preference, because in this
case the diagonal elements B;; = y{l are all the same. Considering
the first fluxoid which enters the ladder, it will always appear at
the center of the network (or next to it, in a ladder with an even
number of loops) as it is affected only by the external field which
drives it to the center. As the field increases, a second fluxoid en-
ters the system, pushing the first one out of its central position
and both fluxoids arrange themselves in an optimum configuration,
keeping apart from each other and away from the network edges.
The same principle determines the arrangements of the next flux-
oids entering the ladder as the field further increases. Rearrange-
ment of fluxoids in the network continues until the last fluxoid
enters at the network center completing one period in which each
loop is occupied with one fluxoid. Occupation of the loops in the
following periods follows the same pattern.

Case 3: I« 1.In this case, both y1and n approach 1 and
iN+1-))
N+1

Thus, the repulsive interaction between fluxoids becomes de-
pendent on the product of their locations relative to the lad-
der’s edges. This is in variance with the previous case (Iz 1) in
which the interaction between fluxoids decreased exponentially
with their relative locations. In addition, contrary to the case [z 1,
where the diagonal elements B;; = y{l are all the same, indepen-
dent of the location i, in the case | « 1, B =i(N+1—1i)/(N+1)
has a maximum value of (N + 1)/4 at the center of the ladder (i.e.
for i= (N +1)/2) and drops parabolicaly to N/(N + 1) at the lad-
der’s edges (i = 1, and i = N). Consequently, the fluxoid self-energy,

Bjj — fori<j. (12)
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Fig. 3. Normalized energy as a function of the normalized magnetic flux in ladders with 11 loops and different ratios | between the loop length and the common width of

adjacent loops.
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Fig. 4. Fluxoid configuration as a function of field in ladders with 11 loops, and different ratio [ = 0.1, 1 and 10, between the loop length and the common width of adjacent
loops. An empty loop is colored blue, and occupied loop is colored yellow or green. The green color indicates degenerated configurations which are incommensurate with
the symmetry of the ladder. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

determined by the coefficients B;;, is maximum at the ladder’s cen-
ter and drops towards the ladder’s edges.

To examine the role of the self-energy in determining the flux-
oids arrangements, it is useful to isolate its contribution to the to-
tal energy E. Exploiting the symmetry of B, the energy E can be
written in terms of the diagonal and the lower off-diagonal ele-
ments of B as follow5'

E= ZB,,n +2Z Z Bjjnin;

i=1 j=i+1

ZBllnl+Z Z Bl](nl+n ) : (]3)

i=1 j=i+1
The first term on the right hand side of Eq. (13) represents the
self-interactions of the fluxoids, the second term represents the
mutual interactions between fluxoids, and the third term expresses
the interaction between the fluxoids and the effective magnetic

field. Suppose that a single fluxoid enters the system at a loca-
tion ip. To minimize the energy, the location iy is determined by
a competition between the self-interaction which prefers location
at the ladder edges and the interaction with the field which fa-
vors location at the ladder’s center. Explicitly, the self-interaction
is 'O(I\ﬁ% and the interaction with the field is

ig—1

- 70 Blolg+ Z Blg]+zBllg = 7’0(N+‘1_10)

J=io+1

The total energy becomes:

. . 1 ¢
io(N+1—-ig)| —— - — |-
0( 0) <N ¥ 1 ¢0>
From this expression it is clear that the self-interaction pre-

vails only if ¢ < ¢o/(N + 1). However, in this case the entry of the
first fluxoid would increase the energy of the system. A decrease
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in the energy requires that ¢ > ¢g/(N + 1). Thus, the interaction
with the field always prevails, and the first fluxoid appears at the
ladder center as in the previous case. Nevertheless, the location
dependent self-interaction and the stronger interaction between
fluxoids, when [« 1, give rise to different fluxoid arrangements at
higher fields, when more than one fluxoid occupies the ladder. In
particular, a larger number of fluxoid configurations are obtained,
including different configurations of the same number of fluxoids
at different fields. In addition, one obtains degenerated configura-
tions that are incommensurate to the ladder symmetry. These are
demonstrated with examples in the following section.

3. Simulations

The simulations described in this section demonstrate the dif-
ferent configurations of fluxoids in ladders with weak, medium and
strong coupling between the loops. In each case, the energy of the
ladder as a function of the loops vorticities and the external field
was calculated using Eq. (7) and the exact expression for the el-
ements Bj (Eq. (8)). For each given field the fluxoid arrangement
(nq, ny, ...,ny) which minimizes the energy was determined.

The dashed curve in Fig. 3 shows the minimum energy as
a function of the normalized flux ¢/¢y in a ladder of 11 ele-
ments with [ = 10. This curve exhibits the well-known Little-Parks
parabolas of a single loop [2], demonstrating that the loops are es-
sentially decoupled. A diagram of the occupation vs. ¢[¢g in the
first period is shown in Fig. 4a. It demonstrates that, except for a
narrow region near ¢/¢q :%, all the loops are either empty or oc-
cupied with a single fluxoid.

A different picture is obtained when [ is reduced to the order of
1. The minimum energy as a function of ¢/¢¢ in the case [ =1 is
shown by the dotted curve in Fig. 3. Due to the coupling between
the loops, the waveform of E vs. ¢ is remarkably changed, show-
ing a broad peak around ¢¢/2 and crests at fluxes corresponding
to fluxoid entries. The fluxoids arrangements as a function of field
is illustrated in Fig. 4b. The first fluxoid enters the sixth loop at
the ladder’s center at ¢p/¢y = 0.29. As the field increases a second
fluxoid enters ladder, pushing the first one out of its central po-
sition and both fluxoids arrange themselves symmetrically in the
fourth and eighth loops, keeping apart from each other and away
from the network edges. As more fluxoids enter the ladder with
increasing field, rearrangement of fluxoids continues until the last
fluxoid enters the ladder’s center completing one period in which
each loop is occupied with one fluxoid. Occupation of the loops in
the following periods follows the same pattern.

When | decreases much below 1, the coupling between the
loops increases significantly giving rise to a more complex E vs.
¢ curve, as shown by the solid line in Fig. 3 for | = 0.1. The ad-
ditional crests in the E(¢) curve indicate additional configurations
of fluxoids through a period as illustrated in Fig. 4c. It is interest-
ing to note that some of these configurations are incommensurate
to the ladder symmetry (marked in green color in Fig. 4c). The first
fluxoid enters the ladder’s center, as in the previous case. However,
with the entry of the second fluxoid, both arrange themselves far-
ther away from each other, in the third and 9th loops, closer to
the ladder’s edges. With increasing field, both fluxoids rearrange
themselves in asymmetric positions, in the fourth and 9th loops.
This configuration is degenerated in energy with a configuration
where the third and 8th loops are occupied. Rearrangements from
symmetric to asymmetric positions also occurs with three and five
fluxoids, as shown in Fig. 4c. A ‘checkerboard’ arrangement is ob-
tained with 5 and 6 fluxoids around ¢/2. The configurations of 7,
8, 9, 10 and 11 fluxoids are complementary to the configurations
of the 4, 3, 2, 1 and zero fluxoids, respectively.

Our analysis of superconducting ladders can be extended to
two dimensional superconducting networks. However, the interac-

tion terms between fluxoids, and between them and the external
field, become more complicated. In a recent publication [27] we
showed numerical results for a 3 x 3 square network, based on the
J? model. These numerical-calculations yield 11 different configu-
rations, exceeding the number of loops in the network, due to re-
arrangement of the same number of fluxoids as the field increases.
Among the 11 different configurations, there are 6 degenerated
states that are incommensurate to the network symmetry. Calcu-
lations of Kato and Sato based on the de-Gennes-Alexander equa-
tions for a network yield quite different results [17]. Involving the
appearance of anti-fluxoids in the network, their calculations pre-
dict 9 configurations all of which are commensurate to the net-
work symmetry. It should be noted, however, that by minimiz-
ing the Ginzburg-Landau free energy, asymmetric fluxoid patterns
have been reported for a 10 x 10 network [28]. Experimental work,
using, e.g., a scanning SQUID-on-tip [29,30], is required to de-
cide between the predictions of the J>- and de-Gennes-Alexander
models.

4. Summary and conclusions

The fluxoids equilibrium positions in ladders consisting of rect-
angular loops depend on the ratio [ between the loops length and
the common width of adjacent loops. For > 1 the interaction be-
tween fluxoids is weak and, in essence, they occupy the ladder’s
loops independently as if the loops are decoupled. In ladders with
Iz 1, a ‘short range’ repulsive interactions between fluxoids arise,
which decreases exponentially with their relative separation. The
fluxoids arrangement is dictated by a competition between their
repulsive interaction and their interaction with the external mag-
netic field which drives them toward the ladder’s center. Ladders
with | <<1 are characterized by a ‘long range’ interaction between
fluxoids, which depends on the product of their locations relative
to the ladder’s edges. In the competition between this long range
interaction and the interaction with the field another factor plays
a role, namely the fluxoids self-interaction. Consequently, in such
ladders, different fluxoids configurations are obtained. In particu-
lar, additional configurations are obtained extending over a wider
range of magnetic flux. Some of these configurations include the
same number of fluxoids arranged in different positions, some of
which are incommensurate to the ladder symmetry.

Finally we note that the basic mechanism governing the flux-
oid arrangements in ladders should also apply to two dimensional
networks. However, a full extension of our analysis to two dimen-
sional networks remains for a future study. The results of this
study could connect to many theoretical and experimental works
on films with antidot arrays, which become networks in the limit
of large antidots, see e.g. [31].
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Abstract. The nature of the interaction between fluxoids and between them and the external
magnetic field is studied in one-dimensional superconducting networks. An Ising like
expression is derived for the energy of a network revealing that fluxoids behave as repulsively
interacting objects driven towards the network center by the effective applied field.
Competition between these two interactions determines the equilibrium arrangement of
fluxoids in the network as a function of the applied field. It is demonstrated that the fluxoids
configurations are not always commensurate to the network symmetry. Incommensurate,
degenerated configurations may be formed even in networks with an odd number of loops.

1. Introduction

The macroscopic quantum nature of superconductivity is manifested in loops, and generally in
multiply-connected superconductors, in quantization of the ‘fluxoid’ defined as: (4mA?/c)$j-dl+ @,
where j is the shielding current in a closed loop, A is the penetration depth, and @ is the magnetic flux
threading the loop [1]. In the early days of superconductivity, it was predicted by Fritz London [2],
and later confirmed experimentally by Little and Parks [3], that the fluxoid must be an integer multiple
of the flux quantum ¢y = hc/2e. Fluxoid quantization effects have been studied extensively, both
theoretically and experimentally, in a variety of superconducting networks [4-12]. However, most of
these studies adopt the mean field approach, providing no intuitive understanding of the interaction
between fluxoids and the mechanism governing their arrangement in superconducting networks. The
purpose of the present work is to elucidate the nature of the interaction between fluxoids and to clarify
the physics behind their arrangements in networks. Analyzing the simplest case of a superconducting
one-dimensional network (‘ladder’), we show that fluxoids act as repulsively interacting objects
dragged towards the ladder center by their interaction with the externally applied field. A competition
between these two interactions determines the equilibrium positions of the fluxoids in the network as a
function of the applied field. To demonstrate this concept we present calculated results of fluxoid
arrangements in several examples of finite 1D and 2D networks.

2. Analysis

Our analysis is based on the “current squared” model (known as the “J* model”) [6], In which the
kinetic energy of the network is calculated as the sum of the squared currents over all the network
wires. The number and arrangement of the fluxoids is determined by the requirement of minimum
energy.

Consider a superconducting ladder of finite length, consisting of N square loops of unit side, as
shown in Figure 1.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
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Figure 1: Finite ladder consisting of N square loops.

The fluxoid quantization equation for the loop i reads:

4 — Jic1 — Jiv1 =1y — D/ b0, (D

where n; is the vorticity of the loop i, ¢ is the flux threading this loop, and by definition J; = 0 for
0 > iori > N.For simplicity, the coefficient 4mA’/c is taken as 1. According to Eq. (1), the set of
the fluxoid quantization equations for all the loops can be written as a matrix equation:

A.a:_,_i
A-J=i—-% 2

where the elements of the matrix A: Ajj = 46;; — 6;j—1 — 6 j+1, and &; ; is the Kronecker 6. The
current vector f can be calculated from Eq. (2) by inversion:

=A@ -2, 3)
Denoting the matrix A=* as B, Eq. (3) can be written as a set of equations:
_ VN ¢ .
]i = j=1Bij (n]—d)—o), i=1..N. (4)

Using the J2 model, knowledge of J; allows calculation of the energy E; of the loop i:
1 1 1 1
E; =2J} + > Ui —Ji-)? 5 Ui —Jis)? + 511251,1' + 5]1%5N,i

1, 1. 1, 1,
=Jil3)i = Jiea —Jinal + 5Jia + 5 )i + 581+ 5 NN
and the total energy E of the network:

E=3E B =S i3 —Jia —Ju) + TR 4300} + 5+ 5Tk )

Using Eq. (1) and realizing that Z?Ll{—]iz + %]iz_l +%]i2+1}+%]12 +%],%, =0, Eq. (5) becomes

¢
E=3Xi(n— ) (©6)
Inserting J; from Eq. (4) yields
¢ ¢ ¢ ¢)\?
E =%l %} B (nj - ¢—0) (ni - ¢—0) = Xij Bij (ninj —2mt (¢—0) ) ()
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The above expression for the total energy, E, is reminiscent of the Ising model for the energy of a
spin configuration, having the form Y;;J;;S;S; -u%; h;S; [13]; n;, and B;; playing the role of the
Ising spin S; and the exchange interaction term J;;, respectively. The first term on the right hand side
of Eq. (7), (Zi i Bi jninj), represents the interaction between fluxoids, including the self-interactions

Y. B;in;%. The second term, (—2 (%Zi in B ]-), expresses the interaction between the fluxoids and the
0

effective magnetic field. The third term, (¢/¢)%Y; j Bij , is constant, independent of the vorticities,
and thus may be ignored.
For the matrix A given in Eq. (2), B = A~! is a symmetric matrix with elements [14]:

By =Cy"™ 771 (1 - n')(1 — V1), fori < . )

wherey =2++3,7=(2-+3)/(2++3) and C=1/(1 —n)(1 —n"*1). Due to the symmetry of
B, B; j for i > j can be calculated as Bj; using Eq. (8). Since n < 1, C is approximately 1 and B;;
can be approximated as y ~(1=/1*1) for all i and j. Thus Eq. (7) becomes

— —(li—jl+1 ¢ ¢ \?
E—Zij)/ (Ii-J1 )(ninj—2¢—0 Tli+(¢—0) ) . (9)
The above expression shows that fluxoids can be treated as repulsively interacting objects, with
interaction energy decreasing exponentially with their separation. In order to minimize the total
energy, the repulsive interaction between fluxoids tends to keep them away from each other. On the
other hand, the interaction between the fluxoids and the effective magnetic field, represented by the

second term in Eq. (9), (—2(]5/(]50 XiniXiv, (i=J |+1)) tends to drive the fluxoids away from the
network edges towards the network’s center. This is because the effective magnetic field

—2(¢p/P0) X; yl_(ll_jlﬂ) o cosh(In(y;) (N + 1)/2 —i)) is minimum at the center of the ladder
(i = (N + 1)/2). Thus, while the external magnetic favors assembling the fluxoids near the ladder
center, the fluxoids repel each other tending to keep themselves apart. Competition between these two
opposite interactions determines the equilibrium arrangement of fluxoids in the network as a function
of the applied field.

Considering the first fluxoid which enters the ladder, it always appears at the center of the
network (or next to it, in a ladder with an even number of loops) as it is affected only by the external
field which drives it to the center. As the field increases, a second fluxoid appears, pushing the first
one out of its central position and both fluxoids arrange themselves in an optimum configuration
around the center, keeping apart from each other and away from the network edges. The same
principle determines the arrangements of the next fluxoids entering the ladder as the field further
increases.

Our analysis of superconducting ladders can be extended to two dimensional superconducting
networks. The basic idea that the fluxoid arrangements are determined by a competition between the
fluxoid repulsive interaction and their interaction with the applied field, remains the same. However,
computations of these interactions, and the resulting fluxoid equilibrium configurations in two
dimensional networks become more complicated. The occupation process in 1D and 2D
superconducting networks are demonstrated in the following section.

3. Simulations

As an example, we present calculated results for ladders with 7, 8 and 9 loops. In each case, the
energy of the ladder, as a function of the loops vorticities and the external field, was calculated using
Eq. (7) and the exact expression for the elements B;; (Eq. 8). For each given field the fluxoid
arrangement (nq, n,, ..., ny) which minimizes the energy was determined.
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The solid, dashed, dashed-dotted curves in Figure 2 show the minimum energy as a function of
the normalized flux ¢/¢, in ladders with 7,8 and 9 loops, respectively. The crests in each curve
indicate a change in the fluxoids configurations in the ladder. Thus, in the ladders with 7,8 and 9
elements the total number of configurations is 7,8 and 9, respectively. It is interesting to note that the
number of configurations is not necessarily equal to the number of elements. For example, in ladders
with rectangular loops attached along their long side, a change of the applied field can cause
rearrangement of the same number of fluxoids, giving rise to an access number of configurations [15].
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Figure 2: Energy as a function of the normalized magnetic flux in ladders with 7, 8 and 9 loops.
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Figure 3: Fluxoid configuration as a function of magnetic flux in ladders with 7, 8 and 9 loops, in the
first period. An empty loop is colored dark blue, and occupied loop is colored yellow or green. The
green color indicates degenerated configurations which are incommensurate with the symmetry of the
ladder.

The fluxoids arrangements as a function of field are illustrated in Figure 3. An empty loop is
colored blue, and occupied loop is colored yellow or green. The green color indicates degenerated
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configurations which are incommensurate with the symmetry of the ladder. The ladders with 7 and 9
loops demonstrate the general rule that when the number of loops is odd, the first fluxoid always
occupies the loop at the ladder’s center. In ladders with an even number of loops, the first fluxoid
occupies a degenerated state on either side of the center, as demonstrated by the ladder with 8 loops.
As the field increases, a second fluxoid enters the ladder, pushing the first one out of its position and
both fluxoids arrange themselves in an optimum configuration, keeping apart from each other and
away from the network edges. In the ladder with 9 loops, this configuration conforms the symmetry of
the ladder, however, this is not the case in the ladders with 7 and 8 elements. As more fluxoids enter
the ladder with increasing field, rearrangement of fluxoids continues until the last fluxoid enters the
ladder’s center completing one period in which each loop is occupied with one fluxoid. Occupation of
the loops in the following periods follows the same pattern.

Figure 4 illustrates calculated results for a 3x3 square network, based on the J? model. Note that the
first fluxoid appears in the central loop of the network, as in a ladder. Also note that the number of
different configurations (11) exceeds the number of loops in the network, due to rearrangement of the
same number of fluxoids as the field increases. This situation occurs in configurations of 3 and 6
fluxoids. Among the 11 different configurations, there are 6 degenerated states that are
incommensurate to the network symmetry (marked in green in Fig. 4). The degenerated configurations
are obtained by applying the symmetry operations of the network. Thus, two degenerated
configurations correspond to N=2,7, and four degenerated configurations correspond to each
configuration with N=3,6.

We note that calculations based on the de-Gennes-Alexander equations for a network yield quite
different results [16]. For example, following the appearance of the first fluxoid at the network central
loop, the second fluxoid appears at the same loop creating a double fluxoid at the network center. This
configuration has a higher energy than that the configuration of two separated fluxoids derived from
the 'J2 model’ (see Fig. 4). Involving the appearance of anti-fluxoids in the network, the calculation
based on the de-Gennes-Alexander equations, predicts 9 configurations all of which are commensurate
to the network symmetry. It should be noted, however, that by minimizing the Ginzburg-Landau free
energy, asymmetric fluxoid patterns have been reported for a 10x10 network [17]. Finally we note that
in our calculations based on the J* model, the fluxoid configurations are temperature independent, as
the only temperature dependent factor in this model is 47wA?/c which scales the current density, and
the square of this factor scales the energy.

Figure 4: Fluxoid configurations in 3x3 square network calculated in the framework of the
'J?2 model’. An empty loop is colored dark blue, and occupied loop is colored yellow or green. The
green color indicates degenerated configurations which are incommensurate with the symmetry of the
ladder.



28th International Conference on Low Temperature Physics (LT28) IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 969 (2018) 012048 doi:10.1088/1742-6596/969/1/012048

4. Summary and conclusions

An Ising-like expression derived for the energy of fluxoids in a 1D superconducting network
reveals that the fluxoids act as repulsively interacting objects with an interaction energy that decreases
exponentially with their relative separation. In this expression, the effective magnetic field drives the
fluxoids toward the network center. The competition between these two interactions determines the
equilibrium configuration of the fluxoids in the ladders. These configurations may be incommensurate
to the symmetry of the ladder, in ladders with even as well as odd number of loops. Fluxoids in 2D
networks follow a similar pattern, i.e. they repel each other and are driven to the center by the applied
field.
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The critical temperature in a superconducting ring changes periodically with the magnetic flux

. threadingit, giving rise to the well-known Little-Parks magnetoresistance oscillations. Periodic
Accepted: 31 May 2016 : changes of the critical current in a superconducting quantum interference device (SQUID), consisting
Published: 20 June 2016 : of two Josephson junctions in aring, lead to a different type of magnetoresistance oscillations utilized

© in detecting extremely small changes in magnetic fields. Here we demonstrate current-induced
switching between Little-Parks and SQUID magnetoresistance oscillations in a superconducting
nano-ring without Josephson junctions. Our measurements in Nb nano-rings show that as the bias
current increases, the parabolic Little-Parks magnetoresistance oscillations become sinusoidal and
eventually transform into oscillations typical of a SQUID. We associate this phenomenon with the
flux-induced non-uniformity of the order parameter along a superconducting nano-ring, arising from
the superconducting leads (*arms’) attached to it. Current enhanced phase slip rates at the points with
minimal order parameter create effective Josephson junctions in the ring, switching it into a SQUID.

Received: 30 March 2016

Small-size SQUIDs attract considerable interest for investigations of local magnetic signals, measuring, e.g.,
dynamics and pinning of single vortices? and local superfluid density in superconductors®, ferromagnetic
patches at the LaAlO,/SrTiO; interface?, quantum magnetization reversal of ferromagnetic nanoparticles® and
single molecule magnets®. A few designs of small SQUIDs without Josephson junctions have been proposed,
based on mesoscopic superconducting loops’, asymmetric superconducting rings®, inhomogeneous supercon-
ductors’, constrictions in the superconducting rim'?, interrupted mesoscopic normal loop in contact with two
superconducting electrodes!!, and a combination of superconducting and metallic contact banks'2. SQUIDs with-
out Josephson junctions may offer advantages in simplicity of fabrication, and, under certain conditions, a steeper
dependence of the measured quantities on the magnetic flux®. The present study may offer a different approach in
designing a SQUID without Josephson junctions by switching a nano-ring with two arms into a SQUID using a
large enough bias current. The potential application of such a SQUID will be discussed elsewhere. Here we focus
on the fundamentally important observation of current-induced switching between Little-Parks and SQUID
magnetoresistance oscillations in Nb nano-rings.

Niobium amorphous films, 40 nm thick, were deposited from a Nb target on silicon substrates via
DC-magnetron sputtering. The films were patterned into square rings (side 340 nm, rim’s width 55nm) with two
arms (65nm wide, 250 nm long) as shown in Fig. 1. For signal amplification, a string consisting of a serial connec-
tion of 260 such rings was measured. Details of the sputtering and patterning processes are described in the Methods
Section. Measurements were performed near the superconducting transition temperature for bias currents between
10nA and 10pA, employing a commercial Physical Properties Measurements System (PPMS, Quantum-Design).

Figure 2 shows the temperature dependence of the resistance of a single ring with two arms measured at zero
applied magnetic field. The curve corresponding to the lowest measuring current exhibits a sharp transition at
T.~7.2K with a width < 0.1K. As the current increases, the R(T) curves are shifted to lower temperatures, as
expected. The right inset to Fig. 2 shows the temperature dependence of the sample resistance over an extended
temperature range, between room temperature and 4 K, using measuring current of 10nA.

Figure 3 shows typical magnetoresistance oscillations measured at T =7.1K, representing three differ-
ent types of waveforms obtained for different measuring currents. At low currents (1 pA and below) classi-
cal Little-Parks oscillations'? are obtained, exhibiting parabolic shape with upward cusps at odd multiples of
®,/2, and a field-period of ~170 Oe, corresponding to the area of a single ring (~1.2-10~° cm?). For higher cur-
rents, in the range ~2-3 LA, the cusps disappear and the oscillations become sinusoidal. As the current further
increases to 4 pA, the waveform drastically changes, exhibiting downward cusps at multiples of @, typical of the

!Department of Physics and Institute of Nano Technology, Bar-1lan University, 5290002 Ramat-Gan, Israel.
2Department of Physics and Optical Engineering, Ort Braude College, 21982 Karmiel, Israel. Correspondence and
requests for materials should be addressed toY.Y. (email: yosiyeshurun@gmail.com)
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Figure 1. A Scanning Electron Microscope (SEM) image of a single ring with two arms. The background
shows the serially connected rings with the current and voltage leads.

R12]

TIK]

Figure 2. Resistance of a single ring with two arms versus temperature measured with different bias
currents. Right inset: Temperature dependence of the resistance in an extended temperature range for
I=10nA. Left inset: I-V curve measured at 7.1 K in zero field.

magnetoresistance response of a SQUID biased with a current that is equal to its maximum supercurrent'®. The
data of Fig. 3 can thus be well interpreted as indicating a current induced switching of the ring into a SQUID.
Similar results were obtained in a narrow temperature range between 7 and 7.15 K. However, the current required
to obtain the SQUID response sharply increased with decreasing temperature, such that below 7K it reached a
level beyond the limit of our system. In addition, we performed measurements at constant currents varying the
temperature between 6.5 and 7.2 K. These measurements showed that SQUID like magnetoresistance oscillations
can also be obtained by increasing the temperature biasing the sample at a high current.

To better illustrate the current-induced switching between Little-Parks and SQUID magnetoresistance oscil-
lations, we add in Fig. 3 guide to the eye solid curves through the data points, based on theoretical predictions for
the various types of magnetoresistance oscillations, AR. The theoretical curves are superimposed on the meas-
ured monotonous background. The lowest curve (1pA) in Fig. 3 describes typical Little-Parks parabolic oscilla-
tions (see, e.g. Figure 4.5 in ref. 15):

2
AR;p x n—g ; [n—l]déogég[n+l]450,n:0,:|:1,:|:2,....
?, 2 2

1

The intermediate curves (2 and 3 pA), correspond to the Little-Parks oscillations in a ring with two symmet-
ric Josephson junctions (i.e., a SQUID), calculated on the basis of the J> model'®. According to this model, the
magnetoresistance oscillations in a single superconducting loop follow the field dependence of the square of the
screening current . Thus, the linear field dependence of I, in a simple ring gives rise to parabolic oscillations.
However, in a SQUID the screening current is sinusoidal, |I;| =1, |sin(w®/®,)|, where I is the critical current of
each of the Josephson junctions forming the SQUID". Accordingly, the Little-Parks oscillations in a SQUID are
expected to be sinusoidal:

ARpp_squm X sin® e .
2,

2
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R

Figure 3. Magnetoresistance of a single ring for different bias currents. Measurements performed at
T=7.1K with currents between 1 1A and 4 pA are described as a function of the magnetic flux, ®, normalized
to the quantum flux, ®,, taking the ring area as 1.2-10~° cm?. The guide to the eye solid curves through the data
points describe classical Little-Parks parabolic oscillations (1A curve), Little-Parks sinusoidal oscillations in

a SQUID (2 and 3 pA curves) and typical SQUID oscillations (4 pA curve), Eqs (1), (2) and (4), respectively,
superimposed on monotonic backgrounds.

Note that in a conventional SQUID it is assumed that the rim width is larger than the superconducting pen-
etration depth, \, and, therefore, the Little-Parks effect is unobservable. However, in our case, as is virtually the
case in all nano-rings, the rim width is smaller than X. Thus, magnetoresistance oscillations due to Little-Parks
effect, Eq. (2), are expected in such SQUIDs near T..

The upper solid curve in Fig. 3, corresponding to 4 A, is based on the formula for the average voltage across
a SQUID in the dissipative regime,

V = (R/2){I* — [21, cos(n®/Dy) > }'/2, (3)

where R, is the junction’s shunt resistance and I, is the critical current of each of the Josephson junctions (see
Eq. 6.48 in Ref. 15). Assuming that the external current I =2I,, one obtains:

1— cosz[ﬂ] sin[ﬂ] .
D, P (4)

The agreement between the calculated curves and the data shown in Fig. 3 supports our scenario of
current-induced switching of a superconducting nano-ring with two arms into a SQUID.

The data of Fig. 3 indicate that the crossover from a ring to a SQUID occurs for currents around 2 A, where
the parabolic Little-Parks oscillations transform to sinusoidal oscillations. As noted above, the bias current of
~4 A corresponds to the SQUID response for external current that equals the maximum supercurrent of the
SQUID, I,,(¢ = 0)=2I.. Indeed, the I-V curve measured at 7.1 K in zero field (see left inset to Fig. 2) shows an
abrupt voltage increase around this current. It should be noted that the bias current of 4.A includes the current
(~2pA) needed to transform the ring into a SQUID. Thus, the maximum supercurrent of the SQUID, I,,(0), is
approximately 2 pA. The dependence of I, on @ can be deduced from the data of Fig. 3, using Eq. (3). The results
are shown in Fig. 4 together with the theoretical I,,(®) in a conventional SQUID (solid line). The theoretical curve
is superimposed on the bias current I, required for the creation of our SQUID:

1/2

ARSQUID S

I, =1y + 2I|cos(n®/P)|. (5)

In deriving I,,(9), the background was subtracted and the junction’s shunt resistance for a single SQUID was
estimated as Rg=2.3 (), corresponding to twice the measured resistance of the SQUID at @,/2. The oscillatory
behavior of the critical current above a bias current of 2plA seems to compare quite well with that of a real SQUID
with two Josephson junctions (solid curve in Fig. 4). Note, however, that our current-induced SQUID does not
show the plateau behavior of I, (®) around integer flux quanta as proposed in Refs 7 and 18.

The current induced switching of a superconducting nano-ring with two arms into a SQUID can be under-
stood considering the non-uniform order parameter along the ring in such a structure when a magnetic field is
applied"-?*. Based on the Ginzburg-Landau equations, de-Gennes' and Alexander?® showed that two minima of
the order parameter are generated at equal distances from the connection points of the arms to the ring?®*. An
intuitive way to understand this result is by starting with a ring with a single arm. As the arm is not affected by
the magnetic flux, the order parameter along the ring has a maximum at the connection point and a minimum at
the antipodal point. This minimum drops to zero at the onset of superconductivity when the flux becomes equal
to a half flux quantum, ¢ = $,/2. When two symmetrical arms are connected to a ring, the order parameter is
maximum at the connection points and minimum at equal distances from these points?**. Solving the nonlin-
ear Ginzburg-Landau equations, Fink et al.!® predicted that the maximum supercurrent in a ring with two arms
of size comparable to the coherence length, depends periodically on @ in a way similar to a classical SQUID.
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Figure 4. The maximum supercurrent I, of the current-induced SQUID as a function of the normalized
flux. The solid curve describes the theoretical I,,(®) in a conventional SQUID superimposed on the bias current
I, required for the creation of the SQUID, Eq. (5). The junction’s shunt resistance Ry is taken as 2.3 Q.

Experimental confirmation of this prediction was demonstrated in Al mesoscopic rings using current-voltage
measurements’. The previous studies”?? emphasized the role of the geometrical parameters of the ring and did
not consider the role of the bias current in inducing the SQUID behavior. Our magnetoresistance measurements
indicate that the geometry alone is insufficient to produce a SQUID without the involvement of large enough bias
current. This is evident from the classical parabolic Little-Parks oscillations observed at low bias current (lowest
curve in Fig. 3). As explained above, formation of a SQUID at these low bias currents would result in sinusoidal
rather than parabolic Little-Parks oscillations. Such sinusoidal oscillations are observed only when the bias cur-
rent is increased to ~2 pA.

The role of the bias current in inducing a SQUID behavior can be associated with current-induced phase
slips*%. Currents above I,,(®) generate a voltage drop across the SQUID. Due to the position dependence of the
voltage, the phase of the order parameter changes at different rates in different places, leading to phase slips that
are more effective at the points with weakest superconductivity in the circuit. Phase slips at these points further
reduce the order parameter down to a level required for the creation of effective Josephson junctions. Note that
the current passes asymmetrically through some of the loops sitting at the right and left sides of the array, see
Fig. 1. However, as shown in refs 8 and 25, except for skewness the behavior of an asymmetric loop is similar to
that of a symmetric loop.

For the creation of the Josephson junctions within the range of a single @, the weak links must be limited
to a length scale comparable to the coherence length, £(T). Furthermore, for the phase slips to be effective, the
rim’s cross-section should be of order £2(T). These requirements are satisfied at temperatures close to T, where
£(T)=€,(1 — T/T.)""2=340nm at T =7.1K, taking the zero temperature coherence length £, =37 nm!°. Finally,
we note that the possibility of coupling of the response of neighboring rings due to non-local effects is excluded
because the distance between neighboring rings is an order of magnitude larger than €. Non-locality between
neighboring rings due to the magnetic field generated by the rings is also excluded, since close to T, the screening
currents are negligibly small.

In conclusion, we have demonstrated that a superconducting nano-ring with two arms can be switched into
a SQUID by externally applied bias current. The SQUID behavior was demonstrated by the current induced
transformation of the Little-Parks magnetoresistance oscillations from parabolic into sinusoidal oscillations
and eventually into oscillations typical of a SQUID. The formation of a SQUID is attributed to the combined
effects of current induced phase slips and non-uniform order parameter along the ring caused by the supercon-
ducting arms. We note that such superconducting structures comprising a ring with two arms are common in
nano-fabrication in which the arms serve as leads to the ring. Such superconducting nano-structures may be
utilized as field sensitive nano-devices without artificial Josephson junctions.

Methods

Niobium thin films were deposited from a Nb target (99.95%, ACI Alloys) on silicon substrates with 1m of
thermal silicon oxide via DC-magnetron sputtering. Sputtering was performed in 2 mTorr Ar pressure, at room
temperature and a rate of 1.8 A/s, to a total thickness of 40 nm. Subsequently, the Nb films were spin-coated with
about 200 nm of Poly(methyl ethacrylate) (PMMA) 950 A4 resist (Microchem Corp.) and baked on a hot-plate
at 180°C for 120 seconds.

Masks were made using Electron-Beam Lithography by overexposing the PMMA and causing the PMMA
polymers to be cross-linked as described in?*?”. The Nb was etched with Reactive Ion Etching (RIE) using SF. The
full procedure is described in?. Electrical contacts were made by wire bonding of 25 um thick aluminum wires
directly to the Nb.
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Abstract. Nb nano-rings connected serially by Nb wires exhibit, at low bias currents, the
typical parabolic Little-Parks magnetoresistance oscillations. As the bias current increases,
these oscillations become sinusoidal. This result is ascribed to the generation of Josephson
junctions caused by the combined effect of current-induced phase slips and the non-uniformity
of the order parameter along each ring due to the Nb wires attached to it. This interpretation is
validated by further increasing the bias current, which results in magnetoresistance oscillations
typical of a SQUID.

1. Introduction

The Little-Parks magnetoresistance oscillations in superconducting rings have been extensively
studied both theoretically and experimentally, see e.g. [1-13]. However, quite frequently the observed
oscillations’ waveform deviates from the predicted parabolic oscillations, exhibiting sinusoidal-like
oscillations, see e.g. [2-4]. Such deviations can be related to a distribution of the ratio &/R in a wide
ring [2] (& is the coherence length and R is the radius of the ring), or to a size distribution of rings in a
network [3]. In this article we propose an alternative explanation associated with the existence of
Josephson junctions (JJ) in a ring. The existence of such junctions is highly probable in
superconducting nano-rings with superconducting leads (‘arms') attached to them. Such
superconducting structures comprising a ring with two arms are common in nano-fabrication in which
the arms serve as leads to the ring. As shown by de-Gennes [14] and Alexander [15] the arms cause a
non-uniform order parameter along the ring with two minima at equal distances from the connection
points of the arms to the ring. In the presence of large enough bias-current, enhanced phase slips at
these minima can generate Josephson junctions in the ring [16]. In this paper we show that in such a
ring with Josephson junctions, the Little-Parks (LP) oscillations should become sinusoidal. We
demonstrate this effect in Nb nano-rings by showing that the parabolic Little-Parks oscillations at low
bias currents are switched into sinusoidal oscillations by increasing the bias current.

2. Experimental
E-beam lithography was used to fabricate Nb square loops (340x340 nm?) connected serially by 66
nm wide Nb wires, see right panel of Figure 1. The ring rim (~57 nm) is of the order of the zero
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temperature coherence length in Nb, &, = 40 nm. For details of the fabrication process see Ref. [16].
Magnetoresistance measurements were performed using a commercial system (PPMS, Quantum-
Design).

3. Results

Current-induced switching of the classical LP parabolic oscillations into sinusoidal ones is
demonstrated in the left panel of Figure 1 which shows typical magnetoresistance oscillations
measured at T = 7.1 K. At low currents (1 pA and below) parabolic LP oscillations are obtained [1],
exhibiting upward cusps at odd multiples of ®y/2, and a field-period of ~ 170 Oe, corresponding to the
area of a single ring (~1.2:10° cm?®). For higher currents, (2 - 3 pA), the cusps disappear and the
oscillations become sinusoidal. As we argue below, this change results from generation of Josephson
junctions in the rings. A clear manifestation of the existence of these junctions is obtained by further
increasing the current to 4 uA, yielding oscillations with downward cusps at multiples of @y, typical of
the magnetoresistance response of a SQUID biased with a current that is equal to its maximum critical
current [17].

1 (1A ! Q)

-

/P
0

Figure 1. Left panel: Magnetoresistance of a single Nb ring measured at T = 7.1 K with currents
between 1 and 4 pA. The magnetic flux, @, is normalized to the quantum flux, ®,, and calculated for a
ring area of 1.2:109 ¢cm®. The solid curves through the data points are guide to the eye. Right panel:
A scanning electron microscope image of the Nb rings.

4. Discussion

We begin by considering the effect of a single arm on a ring. As the arm is not affected by the
magnetic flux, the order parameter along the ring has a maximum at the connection point and a
minimum at the antipodal point. This minimum drops to zero when the flux becomes equal to a half
flux quantum, ® = ®y/2 [18, 19]. When two symmetrical arms are connected to a ring, the order
parameter is maximum at the connection points and minimum at equal distances from these points [18,
19]. Current-induced phase slips at these minima further reduce the order parameter down to a level
required for the creation of effective Josephson junctions.
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We recall that screening current in a ring without Josephson junctions is linear with the magnetic
flux, with discontinuities at odd multiplications of ®@¢/2:

2) I;‘P_H = I sin(n®/Dg)cos(nn) ; (n - %) Py <P < (n + %) ®y,n=0,41,%2, ...

as shown by the dashed line in Figure 2. Consequently, the magnetoresistance, which is proportional
to the kinetic energy 12 [20-22] is parabolic (see the dashed line in Figure 3). However, for a ring with
Josephson junctions of critical current I, the dependence of the screening current I[**" on ®/®, is
[23]:

@ 15" = L sin(n®/®o)cos(mn) ; (n—3) @ < @ < (n+2) Po,n = 0,£1, %2, ..

as described by the solid line in Figure 2. As a result, the magnetoresistance is sinusoidal, as shown by
the solid line in Figure 3. The switching of the magnetoresistance waveform from parabolic to
sinusoidal in our data can, therefore, be ascribed to the generation of Josephson junctions in the ring
due to the combined effects of current induced phase slips and non-uniform order parameter along the
ring caused by the superconducting arms. The existence of the Josephson junctions in the ring is
clearly manifested by the SQUID-like magnetoresistance oscillations, with cusps down, obtained
when the current is increased to 4 pA (see Fig. 1). At this current the magnetoresistance oscillations
result from the flux dependence of the critical current of the SQUID rather than by oscillation of the
critical temperature due to oscillations of the screening current.

Note that in a conventional SQUID it is assumed that the rim width is larger than the
superconducting penetration depth, A, and, therefore, the Little-Parks effect is unobservable. However,
in our case, as is usually the case in most nano-rings, the rim width is smaller than A. Thus,
magnetoresistance oscillations due to Little-Parks effect, Eq. (2), are expected in such SQUIDs near
Tec.
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Figure 2. Flux dependence of the screening current in homogeneous ring and in a ring with
Josephson junctions (dashed and solid lines, respectively).
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Figure 3. Flux dependence of the superconducting kinetic energy in homogeneous ring and in a

ring with Josephson junctions (dashed and solid lines, respectively).

5. Summary and Conclusion

Little-Parks oscillations can transform from parabolic to sinusoidal when a Josephson junction is

generated in the superconducting loop. We demonstrated that such an effect can be induced by
external current in Nb nano-rings with two arms. Moreover, we demonstrated that such a ring exhibits
SQUID-like magnetoresistance oscillations when large enough bias current is applied.
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Abstract. We study the magnetoresistance of aluminium ‘double-networks' formed by
connecting the vertexes of nano-loops with relatively long wires, creating two interlaced
subnetworks of small and large loops (SL and LL, respectively). Far below the critical
temperature, Aharonov-Bohm like quantum interference effects are observed for both the LL
and the SL subnetworks. When approaching T, both exhibit the usual Little-Parks oscillations,
with periodicity of the superconducting flux quantum &y=h/2e. For one sample, with a
relatively large coherence length, &, at temperatures very close to T, the &, periodicity of the
SL disappears, and the waveform of the first period is consistent with that predicted recently
for loops with a size a < ¢, indicating a crossover to 2@, periodicity.

1. Introduction

In a multiply connected superconductor, the fluxoid, defined as the sum of the magnetic flux and the
line integral of the screening current, is quantized in units of @, = h/2e, where the 2e is a hallmark of
electron pairing in the superconductor. As a direct consequence of this fluxoid quantization, periodic
oscillations of the critical temperature T, as a function of magnetic field, known as the Little-Parks
effect manifest themselves as oscillations of the magnetoresistance (MR) close to T.. The amplitudes
of the critical temperature, AT., and the magnetoresistance oscillations, AR, are related by the slope of
the resistance vs. temperature, R(T): AR = (dR/dT)AT, [1].

Theoretical studies [2] have predicted that in superconducting nano-loops with a length-scale a < &
the dominant periodicity is h/e rather than h/2e. The same theories predict that for high-T
superconductors (HTS) with d-wave symmetry, the h/e periodicity is also expected for a = & Recent
experiments ([3, 4]) failed to identify the h/e component in HTS, probably because & in these
materials is only ~2 nm and, therefore, a >> ¢ in most of the temperature range.

In the present study we focus on aluminium, a low-T. superconductor with a relatively large bulk
coherence length (& = 1.6 um). In nanostructures made of diffusive thin films the coherence length is
reduced due to the finite mean free path, and simultaneously the penetration depth A, is enhanced.
Typical values of &in these aluminium nanostructures lie in the range of 100 to 200 nm. Close to T,
the coherence length &(T) diverges, allowing in principle to meet the criterion a < & in nanostructures
with circumferences in the order of several hundred nanometres. On the other hand, the critical field of
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bulk Al amounts to only 10 mT, giving a strong limitation for the number of Little-Parks oscillations
(LPO) that can be observed. In reduced dimension, i.e. when the lateral dimensions are in the order of
the penetration depth A, the critical field B, may increase to a few hundred mT. Taking these
considerations together, we fabricated ‘double-networks' [3], see figure 1, with small loops of order of
400 x 400 nm?, connected by wires of ~ 1600 nm length. An applied field of ~ 10 mT corresponds to a
flux of h/2e through the small loops.

Figure 1. Scanning electron micrograph of an Al
double-network (sample 1) with large (small)
loop side length 1.71 um (426 nm), line width
w =50 £ 5 nm, thickness d = 30 nm.

~ ’ 0
200 nm §
| i

2. Experimental

2.1. Sample fabrication

We use a lift-off electron beam lithography process in which Al is electron-beam evaporated onto a
cooled, pre-patterned, oxidized Si substrate. The lithographic mask is then removed in warm acetone.
The width of the lines is around 60 nm, the film thickness amounts to 30 nm. The arrays consist of
roughly 10 x 10 loops. The samples feature normal state resistance of R, = 20 - 40 Q.

2.2. Transport measurements

Due to the pronounced temperature dependence of the LPO, particular care is taken to stabilize the
cryostat temperature during the magnetic field sweeps. We use a combination of a carefully calibrated
resistive thermometer to determine the absolute temperature and a capacitive sensor for keeping it
constant within + 1 mK around the set-point temperature. The set temperature spacing is adapted to the
steepness of the R(T) curves and amounts to a few mK around T. Before starting the
magnetoresistance sweeps the temperature is allowed to stabilize for several minutes.

The cryostat is equipped with home-made high-frequency filtered cables to record the four-point
differential resistance dV/dl by biasing a DC bias current that is kept smaller than 500 nA
superimposed with a small AC current in lock-in technique. We simultaneously measured the
resistance R = V/I which shows qualitatively the same but more noisy data than the dVv/dl. The low
temperature critical current of the samples amounts to 50 - 250 pA. Close to T, where the LPO are
maximal, the zero-field critical current still amounts to more than 2 pA.

The magnetic field is applied perpendicular to the sample plane using a superconducting solenoid. For
each temperature, measurements are performed at a sweep rate of ~ 5 mT/min. For each temperature
we record a sweep with increasing and decreasing field, as a control for constant temperature
throughout a sweep, and in order to be able to correct for small field offsets. The field range is adapted
to the critical field at the set temperature.
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Table 1. Dimensions and transport characteristics of the two samples presented in this article. LL:
large loops, SL small loops. w: line width from electron micrographs, wg: line width from fit to eq.
(1), & coherence length from fit to eq. (1), &a: coherence length from fit to eq. (2), T.: critical
temperature, I;: critical current at 300 mK, B.: critical field extrapolated to T = 0 from the dV/dI(B)
measurements, R,: normal resistance measured above B.. For sample 2 the fits have been performed
with the low-bias data shown in figure 3.

c B Rn
(MA)

Sample | SL size | LL size| w Wit Ecal £ T ¢
(mT) | (Q)

No. (nm) (nm) (nm) (nm) (nm) (nm) (mlc<)

1 426410 |1710+£30] 50+£10 | 50+£5 118424 |102+10|1408+5| 5545 |194+10| 33.2+1
2 324410 |1540+30| 66110 | 6145 |114+19 137415 |145745|240+10 | 152+10 | 23.3£1

3. Results
3.1. Critical temperature, critical field and coherence length

Figure 2 a) shows differential MR, dV/dI(B), curves in the temperature range 380 - 1600 mK, recorded
on sample 1 with 426 nm side length of the small loops and 1.71 pm of the large loops (see table 1 for
sample dimensions). From the set of dV/dI(B) curves we construct the envelope of the B(T) phase
boundary (without the oscillatory part) from which we deduce the coherence length, & and T, using
the relation [7]
_ m? (W lB) 2
T.(B) =T, [1 - ?(To) ] , 1)
where wy;, is the width of the wire. For comparison we also estimate the coherence length from the
low temperature critical field, B.(0) assuming a thin slab in magnetic field resulting in the relation
[10]:
Seal = \/§(D0/(”WBC(O)) (2)
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Figure 2. a) dVv/dI(B) curves of sample 1 covering the whole field range and the whole temperature
range from 388 mK (dark blue) to 1658 mK (yellow), b) Zoom into the positive field direction of
selected data from panel a) close to T.

The loop sizes have been determined by inspection of the electron micrographs and are additionally
deduced from the observed flux periodicity assuming square-shaped loops. The numerical values for
the various parameters are given in table 1. The values for T, correspond well with the position of the
R(T) = Ry/2 in the temperature curves as well as with the dV/dI(B) curve at which the largest
oscillation amplitude is observed. Also, both estimates for the coherence length agree with each other
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within ~ 20% for both samples, supporting the suitability of the simplified models. Taking the average
value of these two estimates, we find that for sample 1 (2) the ratio between the coherence length and
the SL edge length a amounts to &a ~ 0.26 (0.39). Thus, we expect the transition to the h/e periodicity
being more likely to be observable in sample 2.

3.2. Little Parks effect

Figure 2 b) zooms into the positive field direction close to T.. Figure 3 shows dV/dI(B) data for sample
2 with SL size of 324 nm and LL size of 1.54 um. For both samples and at all temperatures we
observe symmetric periodic oscillations of dV/dI(B) corresponding to h/2e oscillations of the small
loops (SL) and of the large loops (LL).

a) B(T) b) c)
26 ; '0_'1 _ ? (_).',1 ) 25
i ; F ~ 7| [—320mK |
500mK
20 750mK 20}
1000mK —~
= | 1260mK| e 3
gis . \ y . 1360mK| £ 154 g
= 1400mK| T ©
by 1| ' I..'r 1410mKl 2 .
=10 1 J { 1420mK| =10} =l
= - ' - 1430mk| |
LAY /) 1440mK | ==
5 NS N /i 1450mK 51 |
\_\-. 4 7 1460mK |
Q\\\ VTR "y 1470mK |
-10 -5 0 5 10 0 0.5 1 1.5 2 0 1 2 3
(324 nm)? . B/ &, (324 nm)? - B/ & ®,/[(324 nm)? - B]

Figure 3. a) Selected dV/dI(B) traces of sample 2. b) Same curves as in a) for a reduced range in
positive field direction, c) FFT of the dV/dI(B) data shown in a).

Closer inspection reveals for both samples a gradual change of the LL oscillations from a cusp-up
form (typical of LPO) at low temperature, through a sinusoidal behaviour at intermediate temperature,
into a cusp-down (SQUID-like) shape at higher temperatures. A similar crossover, induced by the bias
current rather than by temperature, was reported by Sharon et al. for Nb chains of rings [5]. The effect
is most pronounced at low fields when the flux through the SL is still smaller than @y/2. The
amplitude of the LL oscillations vanishes at somewhat smaller temperatures than the SL oscillations.
Both observations suggest that the coherence in the LLs is not fully developed and that weak links
exist that act as Josephson junctions. Furthermore the amplitude of the LL oscillations is locally
suppressed at odd multiples of @y/2 of the SLs. At these flux values the ring current in the SL is
maximal. Hence, the suppression of the LL amplitude can be understood as an interruption of the ring
current in the LLs. Similar observations were made in Al nanostructures consisting of several loops
sharing the same strands [6, 7]. This observation is related to the Little-Parks-de Gennes effect [8]
which describes the destruction and restauration of superconductivity in multiply connected
superconductors around odd multiples of @,/2 [9].

3.3. Little-Parks effect of small loops and transition to h/e periodicity

We now turn to discuss the SL oscillations. These also show the typical cusp-up behaviour well below
T. and a sinusoidal shape close to T.. This shape transition is most pronounced in sample 2 and is
marked by a broadening and a shift of the resistance maximum at @y/2 to larger fields. The Fast
Fourier Transform (FFT) of the data (see figure 3 c)) reveals that besides the usual h/2e component
also an h/3e component is present which starts to dominate close to T.. The h/3e component indicates a
modulation of the amplitude of the regular h/2e LPO. We interpret these findings as an onset of the
transition to h/e which is expected for very small loop sizes. Due to the limited field range that covers
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only slightly more than one period of the h/e, the fundamental h/e component cannot be seen in the
FFT, but rather a higher harmonic of it, i.e. the h/3e component.

To investigate this observation further we performed dV/dI(B) measurements on sample 2 under
relatively high bias current of 2.1 pA. With this bias the apparent T, is somewhat smaller than in the
low bias data. Two examples of differential resistance curves, one with low and one with high bias, are
plotted in figure 4 a). In the high-bias data the oscillations appear more pronounced and dV/dI(B)
exceeds R, around @ = @y/2 and close to B,(T). In these field ranges also irregular oscillations are
visible although the LPOs are washed out in the low bias data. Both observations are consequences of
the non-linear current-voltage characteristics in this range and the differential measurement scheme.

We checked that the absolute resistance remains everywhere smaller than R,
a) b)
35— ¥ v v l v v T T
| =0 pA; T = 1440 mK \ .
30 |— 1 =21 pA:T=1302 mKI :

25 l |'

20

dv / dl ()
(E=Eg)/Ey % 103

°31s 1 05 rJ 0.5 1 15 -1 -1/2 0 12 1
(324 nm)? . B/ 2, @/(hie)

Figure 4. a) Comparison of differential resistance vs. B curves of sample 2 with zero DC bias current
and with finite DC bias current (2.1 pA) close to T.. b) Energy vs. flux for a superconducting loop
with a < £ showing the modulation of the odd LPOs. Reprinted with permission from MacMillan
Publishers Ltd: Nature Physics [2], copyright 2008. In this right figure @ is described in units of @&, =

h/e.

For both curves, the shape of the central dip (at @ = 0) is much different from that of the side dips
(at @ = @), implying that the Little-Parks h/2e periodicity is broken. On the other hand, these data
show a striking similarity to the theoretical calculations of Loder et al. [2] predicting h/e periodicity,
as depicted in figure 4 b). Note that in this figure the flux is plotted in units of h/e. Unfortunately, we
observe only one period as the field required to observe more periods exceeds the critical field, B.(0),
of this sample. Nevertheless, the nearly parabolic shape of the side minima and the distorted shape of
the parabola centred at @ = 0 may serve as a fingerprint of the predicted h/e periodicity. Note that the
theoretical prediction (right panel) describes the oscillation in the energy while the experimental
results (left) describe the differential resistance. The two, however, are related since both are directly
related to AT, [10]. The similarity with the theoretical curve is most apparent for the high-bias dVv/dI
curve. This suggests that under these measurement conditions, i.e. when the system is driven close to
the transition to the normal state, the relation between differential resistance and energy is most direct.

3.4. Aharonov-Bohm effect in small loops

Finally we note that the temperature dependence of the amplitude of the SL oscillations is non-
monotonous. As figure 3 c¢) shows, at low temperature, T < ~1000 mK, we observe h/e and h/2e
oscillations of the small loops that almost disappear for intermediate temperatures, ~1000 mK < T <
~1200 mK. Above 1200 mK dominantly the h/2e and h/3e components corresponding to the Little-
Parks effect appear. We attribute the low-temperature oscillations to quantum interference effects, i.e.
the Aharonov—Bohm effect, indicating that also the phase coherence length of the quasiparticles, Lg, in
this range is in the order of the perimeter of the SLs or larger. When increasing the temperature,
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inelastic scattering sets in that reduces Lo [11]. For completeness we mention that we do not observe
such non-monotonous behaviour for the LL oscillations, indicating that L4, is always smaller than the
perimeter of the LLs.

4. Conclusions

Summarizing, we have presented magnetoresistance data in interlaced networks comprising small and
large loops made of aluminium. We observe the interplay between the magnetoresistance oscillations
in these two subsets of loops. In particular, the @, = h/2e periodic Little-Parks oscillations of the large
loops are modulated by the flux conditions in the small loops. For a sample with high ratio between
coherence length and loop size we observe an onset of the transition from the conventional h/2e to an
h/e periodicity, as predicted for long coherence length. A full experimental verification of the theory
requires measurements of more than one period. However, the relatively low critical field of
aluminium, and the large period of small loops, presently impedes achieving this condition. Further
improvements of the sample design and material quality are currently underway to overcome this
limitation.
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ABSTRACT: Magnetoresistance measurements in a granular
Nb nanoring reveal current-induced crossover between two
distinct quantum coherence effects. At low bias currents,
Cooper-pair coherence is manifested by Little—Parks
oscillations with flux periodicity of h/2e. At high bias currents,
magnetoresistance oscillations with flux periods of h/e are
observed and interpreted as Aharonov—Bohm oscillations,
reflecting the phase coherence of individual quasi-particles.
The model explaining these data views the ring as a chain of
superconducting grains weakly coupled by tunnel junctions.
Low bias currents allow coherent tunneling of Cooper pairs
between the grains. Increasing the current above the critical
current of all the junctions creates a quasi-particles conduction
channel along the ring, allowing for quantum interference of quasi-particles.

KEYWORDS: Superconductivity, nanorings, quantum interference, Little—Parks effect, Aharonov—Bohm effect

Quantum phase coherence and interference effects, beam lithography followed by reactive ion etching (RIE).

commonly associated with superconductors,' are also Altogether, seven samples with the same diameter (500 nm)
observed in mesoscopic normal metals at low temperatures so and different rim sizes (20—80 nm) were measured. The effect
that the scattering of electrons is almost entirely elastic.” Such reported below was observed in three samples with the lowest
effects are experimentally manifested in magnetoresistance rim size. Here we report representative results obtained in one
(MR) measurements, in which the resistance of a super- of these samples, with a diameter of 500 nm, and a rim’s width
conducting or a metal ring is measured as a function of the and thickness of 23 and 20 nm, respectively. Figure 1 shows a
magnetic flux threading it. Mesoscopic normal-metal rings with scanning electron microscopy (SEM) image of this sample.

narrow rims exhibit the Aharonov—Bohm MR oscillations with
a flux period of h/e,” whereas superconducting rings exhibit
MR oscillations with a flux period of h/2e, 2e being the
hallmark of the electron pairing. In the present work we show a
crossover of the flux periodicity in a granular Nb mesoscopic
ring, from h/2e at low bias currents to h/e at higher currents in
a range below the depairing current. This crossover is
explained by viewing the granular ring as a chain of
superconducting islands weakly coupled by tunnel junctions.
The h/2e flux periodicity is associated with the Little—Parks
effect in a ring consisting of Josephson junctions in the zero
voltage state." The magnetoresistance oscillations with a flux
period of h/e are interpreted as an Aharonov—Bohm effect
arising from phase coherence of quasi-particles flowing in the
resistive channel created by the Josephson junctions in the
voltage state.

Thin Nb films were grown by magnetron sputtering on SiO,

Transport and magnetoresistance measurements were per-
formed by employing a commercial physical properties
measurements system (PPMS, Quantum—Design) for temper-
atures 3—10 K and bias currents between 1 and 128 uA.
Figure 2a shows the temperature dependence of the ring
resistance for several measuring currents. A sharp drop of the
resistance is apparent at T, ~ 7.2 K for all the measuring
currents, followed by a current-dependent broad transition. For
increasing the measuring current up to 32 pA, super-
conductivity along the ring is gradually destroyed. For currents
between 32 and 128 uA, a remarkable behavior is observed at
low temperatures, namely, a decrease of the resistance with
increasing temperature. The observed temperature and current
dependence of the resistance become clear by viewing the
granular ring as a chain of Josephson coupled superconducting

substrates. X-rays diffraction (XRD) and reflection (XRR) Received: September 6, 2018
measurements revealed granularity with grains size between 10 Revised: ~ November 8, 2018
and 12 nm. Nb rings were patterned on these films using e- Published: November 9, 2018
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Figure 1. SEM image of the Nb ring with a diameter of 500 nm and rim’s width and thickness of 23 and 20 nm, respectively.

log(1+dV/dI)

Figure 2. (a) Temperature dependence of the ring resistance for the indicated measuring currents. Inset: R(T) for bias currents between 70 and
110 pA. (b) Color encoded diagram of the differential resistance, dV/dl, in the current—temperature plane. The dark arcs indicate the temperature
dependence of the critical current of the different Josephson junctions in the ring.

islands. The initial sharp drop at ~7.2 K to approximately 65%
of the normal resistance indicates the onset of super-
conductivity in the isolated superconducting islands within
the ring. The broad transition for low bias currents (2—8 yA)
is associated with gradual achievement of Josephson coupling
between the superconducting islands, eventually driving the
ring into a zero resistance state. In the intermediate current
range (represented by the 16 pA in the figure), part of the
Josephson junctions in the ring switch into the voltage state,
resulting in nonvanishing resistance. This resistance saturates
for larger currents, represented by the curves for 32—128 yA in
the figure, indicating that all the Josephson junctions in the
ring are in the voltage state. In this state, a continuous resistive
channel associated with the quasi-particle current along the
ring is established.” The quasi-particles are generated either by
thermal excitations or due to breaking up of Cooper pairs by
the current. The excited quasi-particles in each junction can
tunnel already at voltages smaller than the gap voltage,
resulting in a finite resistance, Ry,(T), known as the “subgap
resistance”. The magnitude of R (T) is determined by the
amount of excited quasi-particles and is given by ng(T) =
(Mora/n(T,I,) )Ry, where n; is the total density of electrons
in the normal state, n(T,L,) is the density of the excited quasi-
particles at temperature T and bias current I, and Ry is the
normal resistance of the Josephson junction.” For a constant
bias current, R, decreases with temperature as n(T) increases.
As the bias current increases, Ry, drops and its decrease with
temperature becomes more moderate, indicating that the
generation of the quasi-particles is dominated by the current.
These effects are visible in the R(T) data of Figure 2a for high
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bias currents, and more clearly in the inset to this figure. It is
important to note that even for the largest measuring current
the grains are still superconducting as the depairing current

density, Jg, = 275‘;25 = 1.5 X 10° A/cm? is an order of
0

magnitude larger than the density of the largest bias current in
our experiment. This, in fact, is also evident from the large
drop of the resistance at 7.1 K, only a small part of which can
be attributed to the effect of the superconducting electrodes.
Furthermore, this large drop is followed by an almost constant
resistance down to low temperatures, excluding an influence of
the proximity effect caused by the electrodes. We note that the
above value for ], estimated for bulk Nb, may be an
overestimate for Nb films. As reported in ref 6, the depairing
current density in Nb films may be as low as ~4 X 10" A/cm?
at 3.5 K. However, even this low estimate is significantly larger
than the current where the crossover to h/e periodicity is
observed.

A further support to our view of the granular Nb ring as a
chain of Josephson junctions with distributed critical currents
is obtained from the I-V curves shown in Figure S-1 in the
Supporting Information. The I-V curves are characterized by
several voltage steps at different current values. These are
clearly seen especially at low temperatures. A voltage step
occurs when the current reaches the value of the critical
current of a single or a group of Josephson junctions in the
chain. To provide an even clearer picture, we show here, in
Figure 2b, a color encoded diagram of dV/dI in the current—
temperature plane. Voltage steps in this diagram are visible as a
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Figure 3. Magnetoresistance oscillations in the Nb ring at 3.5 K, for bias currents of 4 and 90 yA, lower and upper panels, respectively. Note the
doubling of the flux periodicity from 105 to 210 Oe, corresponding to a crossover of the flux periodicity from h/2e to h/e, respectively. Insets show

the Fourier transform of the data.

set of dark arcs that reflect the temperature dependence of the
critical currents of the involved Josephson junctions.

Low current magnetoresistance measurements (1—12 yA) at
temperatures between 3.5 and 3.9 K, exhibit oscillations with a
field periodicity of ~105 G, corresponding to flux periodicity
of h/2e for our ring of area ~2 X 10° nm?. Typical
magnetoresistance data, at 3.5 K and a current of 4 A, are
shown in Figure 3 (lower panel). The inset to this figure shows
the Fourier transform of the data, demonstrating domination
of the h/2e periodicity.

A dramatic change in the flux periodicity to h/e is observed
as the measuring current is increased to a range of 75—110 pA.
Figure 3 (upper panel) demonstrates the h/e periodicity
obtained at 3.5 K with current of 90 #A. The Fourier transform
in the inset demonstrates domination of the h/e periodicity.
Figure 4 shows the amplitude of the h/e oscillations as a
function of the bias current. Interestingly, the amplitude is a
nonmonotonic function of I, exhibiting a peak around I, = 90
HA.
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Figure 4. Current dependence of the /e amplitude near zero field.
The error in the amplitude is estimated to be of order 10%. The solid
line is a guide to the eye.

The current-induced flux periodicity crossover is explained
based on our view of the granular ring as a chain of Josephson
coupled superconducting islands. As evident from the R(T)
data of Figure 2, the h/2e magnetoresistance oscillations of
Figure 3 (lower panel) were measured in the superconducting
state where all the Josephson junctions comprising the ring are
in a zero voltage state. It is, therefore, natural to associate these
oscillations with the Little—Parks effect in the Nb ring,
indicating coherence of electron pairs along the whole ring.”’
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The existence of Josephson junctions in the ring is expected to
modify the waveform of the oscillations to sinusoidal instead of
parabolic.” Indeed, the observed waveform is closer to
sinusoidal rather than to parabolic, as apparent from the
Fourier analysis shown in the inset to the lower panel of Figure
3.
The h/e oscillations of Figure 3 (upper panel) appear in the
temperature and current range (see Figure 2) where each
Josephson junction in the ring is in the voltage state; i.e., the
bias current is larger than the critical current of each of the
junctions. In this state, a resistive, conduction channel of quasi-
particles is established along the ring. Thus, it is plausible to
associate the h/e oscillations with the Aharonov—Bohm effect
arising from interference of phase coherent quasi-particles
flowing along the two branches of the ring consisting of
Josephson junctions. Phenomena related to the Aharonov—
Bohm effect in condensed matter were observed in the past in
various metallic> and nonmetallic systems (see, e.g, refs
9—16). The present work demonstrates the effect for the first
time in a ring consisting of Josephson junctions.

In view of a lack of a theory for Aharonov—Bohm
oscillations in such a unique granular ring, it is instructive to
compare the amplitude of the h/e oscillations obtained in this
ring (see upper panel of Figure 3) to the amplitude expected
for a normal Nb ring of the same size. This will provide an
upper bound for the Aharonov—Bohm amplitude expected in
our Nb granular ring. For a metal in zero voltage, the phase
coherence length can be calculated from'” Ly(T) = \/ﬁ )

Te—cTe—ph

where D is the diffusion coefficient and 7, = is the

Teet Teeph

time between inelastic collisions. Here 7._ and 7._, are the
times between electron—electron and electron—phonon
collisions, respectively. For Nb at 3.5 K, D = 3.5 X 107> m?/
s, the inelastic electron—electron collision rate estimated from

ref 18 is -

TE!—E

=2 X 10 57!, and the electron—phonon collisions

1

rate estimated from ref 19 is = 1.7 X 10* s7". The average

Te—ph
time between inelastic collisions is thus 7, = 2.6 ns. These yield
Ly = 3 um, which is larger than the size of our Nb ring.

_ Ly Ly —ar/L,
= —,/—=e€ ?,
h nmr r

using a thermal length L = l% = 87 nm, we find AR %
B

Inserting this value in the relation® AG,,,
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R?AG = 0.026 Q. Obviously, the value of L, calculated above,
using the bulk values for diffusivity and scattering times, is
much larger than that expected for our granular ring. Thus, one
would expect a much lower value of AR for our ring
Surprisingly, the experimentally measured AR in our granular
sample is comparable to the calculated one for a bulk Nb. This
points to an enhanced Aharonov—Bohm effect in our granular
ring, which consists of decoupled superconducting grains. The
enhancement effect can also be deduced from the fact that the
Aharonov—Bohm effect in our experiment is observed at
relatively high voltages, whereas the calculations above were
made for zero voltage. Clearly, as the voltage increases, L, and
consequently AR, should decrease because the rate of inelastic
collisions increases with the electron energy.”’ We thus may
conclude that our measured oscillations amplitude is, in fact,
much larger than expected for a metallic Nb ring of the same
size under the same voltage. This enhancement may be
attributed to the reduced density of quasi-particles in the ring
consisting of Josephson junctions as compared to the density
of electrons in a metallic ring. A lower value of the quasi-
particle density reduces the rate of inelastic collisions and thus
increases L. Note that enhancement of the Aharonov—Bohm
effect, however of different origin, was reported in metallic
rings with superconducting “mirrors”.””*’

The amplitude, AR, of the h/e oscillations shown in Figure
4, exhibits a nonmonotonic behavior as a function of the bias
current. This can be explained as resulting from two competing
processes. As the current increases, the number of quasi-
particles increases, leading to a larger amplitude. However, a
larger bias current is associated with a larger voltage and a
larger energy of the quasi-particles, leading to a larger rate of
electron—electron collisions and consequently to a reduced
length of phase coherence.

As mentioned above, the crossover to the Aharonov—Bohm
h/e flux periodicity was observed in three samples with the
lowest rim size. This is expected in light of the work of Webb
et al?* who showed that a clear Aharonov—Bohm h/e
periodicity may be observed in rings having an area much
larger than the area covered by the rims. When this condition
is not fulfilled, an Aharonov—Bohm h/2e periodicity appears
that can hardly be distinguished from the Little—Parks h/2e
periodicity. Current dependence of the magnetoresistance
oscillations obtained in the three samples can hardly be
compared as they differ widely, probably due to different
granular structure of these samples.

A further support for our interpretation of the h/e
periodicity as the Aharonov—Bohm effect is found in
measurement of the magnetoresistance as a function of the
bias current at a constant magnetic field. As noted by Webb et
al,”” if the voltage developed across the sample is changed, the
interference properties are also affected. This leads to voltage-
dependent fluctuations in the conductance that are similar to
effects seen when the vector potential is changed. Such an
effect is demonstrated in Figure S-2 in the Supporting
Information. Oscillations of the differential resistance are
clearly observed as a function of the bias current in the same
region for which the Aharonov—Bohm oscillations are
observed.

We close our discussion by noting that in the intermediate
current range, between 15 and 45 pA, magnetoresistance
oscillations are not observed. In a current range between 50
and 75 pA there is an indication for a flux periodicity close to
3®,, a phenomenon that requires further investigation.
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Magnetoresistance data in these current ranges are shown in
Figures S-3b,c in the Supporting Information. The Supporting
Information also includes magnetoresistance data for the whole
range in which the h/e periodicity is observed (Figure S-3d,e).
We note that no change in the phase of the h/e oscillations is
observed in this current range. The phase shift reported in ref
26 was obtained in normal metals in a range of relatively low
currents (0—6.8 #A). The absence of an observable phase shift
in our experiment could well be related to the unique structure
of our sample and to the relatively small variations of the
current in a much higher range.

We also note that the existence of Cooper pairs does not
necessarily imply an h/2e periodicity. For example, an h/e flux
periodicity was predicted for s-wave nanorings with a size
smaller than the coherence length, &,.”” Experimental efforts to
detect the h/e periodicity in nanorings were partially
successful.”**” Clearly, the physical origin of the h/e
periodicity observed in our Nb ring is different, as the size of
the ring is much larger than the coherence length (&, & 40
nm).

In conclusion, this work demonstrates two distinct quantum
coherence effects in a single Nb ring. A Little—Parks effect,
which manifests coherence of Cooper pairs, gives rise to a flux
periodicity of h/2e at low bias currents. The Aharonov—Bohm
effect resulting from phase coherence of quasi-particles gives
rise to a flux periodicity of h/e at high bias current. To the best
of our knowledge, this is the first demonstration of the
Aharonov—Bohm effect in a ring of Josephson junctions,
resulting from phase coherence of quasi-particles tunneling
between superconducting islands. The data indicate an
enhancement of this effect as compared to the effect in
metallic rings. This is attributed to the reduced density of
quasi-particles in the superconducting islands which gives rise
to a larger phase coherence length.
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I-V Curves at different temperatures
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Figure S-1. -V curves for the Nb ring in the temperature range 2.5 — 7.5 K. These
curves are characterized by several voltage steps at different current values, clearly seen
especially at low temperatures, see inset. These data provide a strong support to the view
of the granular Nb ring as a chain of Josephson junctions with distributed critical
currents. A voltage step occurs when the current reaches the value of the critical current
of a single or a group of Josephson junctions in the chain.
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Differential resistance as a function of the bias current.
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Figure S-2. Differential resistance as a function of the bias current at zero magnetic
field. As noted by Webb ef al. (PRB 37, 8455 (1988)), if the voltage developed across
the sample is changed, the interference properties are also affected. This leads to
voltage-dependent fluctuations in the conductance that are similar to effects seen when
the vector potential is changed. Oscillations of the differential resistance as a function of
the bias current are clearly observed in the Figure, in the same region for which the
Aharonov-Bohm oscillations are observed.
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Magnetoresistance at different bias current ranges.
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Figure S-3. Magnetoresistance oscillations in different current regimes.

a. Low current regime, showing /4/2e magnetic flux periodicity (2-10 pA).

b. These oscillations disappear as the bias current increases beyond this range.

¢. In the intermediate current regime (60-70 pA), unexplained oscillations with a period of —~3/4/2e
appear.

d-e. In the high current regime (75-105 pA) magnetoresistance oscillations with period of //e are
observed.

f. In the very high current regime (120-150 pA), all oscillations are washed out.
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Chapter 4

4  Summary and Conclusions
Our study of fluxoid quantization in superconducting nano-loops and nano-

networks revealed novel phenomena, mainly those associated with the effects of a bias
current. These include current induced SQUID behavior in a superconducting ring
without Josephson junctions and current-induced crossover of flux periodicity from hc/2e
to hc/e. In addition, we analyzed the behavior of fluxoid occupation in 1- and 2-

dimentional networks, revealing the nature of interaction between fluxoids.

We have demonstrated that a superconducting nano-ring with two arms can be
switched into a SQUID by externally applied bias current. The SQUID behavior was
demonstrated by the current induced transformation of the Little-Parks magnetoresistance
oscillations from parabolic into sinusoidal oscillations and eventually into oscillations
typical of a SQUID. The formation of a SQUID is attributed to the combined effects of
current induced phase slips and non-uniform order parameter along the ring caused by the
superconducting arms. We note that such superconducting structures comprising a ring
with two arms are common in nano-fabrication in which the arms serve as leads to the
ring. Such superconducting nano-structures may be utilized as field sensitive nano-

devices without artificial Josephson junctions.

Our measurements in a current carrying granular Nb ring revealed two distinct
coherent quantum effects. A Little-Parks effect, which manifests coherence of Cooper
pairs, gives rise to a flux periodicity of hc/2e at low bias currents. Aharonov-Bohm effect
resulting from phase coherence of quasi-particles gives rise to a flux periodicity of hc/e at
very high bias current, but still below the depairing current. To the best of our
knowledge, this is the first demonstration of the Aharonov-Bohm effect in a ring of
Josephson junctions, resulting from phase coherence of quasi-particles tunneling between
superconducting islands. The data indicate an enhancement of this effect as compared to
the effect in metallic rings. This is attributed to the reduced density of quasi-particles in

the superconducting islands which gives rise to a larger phase coherence length.

In a joint effort with Prof. Dr. Elke Scheer group from Konstanz we searched for
the theoretically predicted hc/e periodicity in loops smaller than the superconducting
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coherence length. In this study we focused on aluminum, a low-T, superconductor with
relatively large bulk coherence length (§0=1.6 um). Magnetoresistance measurements in
an aluminum double network with large (small) loop side length of 1.71 um (426 nm)
have shown an indication for the predicted hc/e periodicity. Namely, the waveform of the
first period was consisted with that predicted for loops with size smaller than the
coherence length. Nevertheless, only one period of the oscillations could be observed
because the relatively low critical field of aluminum, and the large period of small loops,
impeded observation of more periods. Further improvements of the sample design and

material quality are required to overcome this limitation.

In an effort to elucidate the nature of the interaction between fluxoids and the
physics behind their arrangements in networks, we pursued a theoretical work analyzing
ID and 2D finite networks based on the ‘current squared’ model. An Ising-like
expression was derived for the energy of a network revealing that fluxoids behave as
repulsively interacting objects driven towards the network’s center by the effective
applied field. The competition between these two interactions determines the equilibrium
configuration of fluxoids in the networks as a function of the applied field. We showed
that distinctive repulsive interactions between fluxoids are obtained depending on the
ratio 1 between the loop’s length and the common width of adjacent loops. A ‘short
range’ and a ‘long range’ interactions obtained for 1 >1 and 1 «1, respectively, give rise
to remarkably different fluxoid configurations. We also demonstrated that the fluxoids
configurations are not always commensurate to the network’s symmetry.
Incommensurate degenerated configurations may be formed even in networks with an
odd number of loops. We demonstrated these concepts with calculated results of fluxoid

arrangements in several examples of finite 1D and 2D networks.

In conclusion, our studies provided a deeper insight into the behavior of
superconducting nano loops and networks, shedding light on the different mechanisms
underlying the various flux periodicities and fluxoid configurations in these systems.
Unlike previous studies, this thesis has focused on the influence of high bias current
(close but still below the depairing current) on the behavior of nano multiply connected

superconductors. Our studies expanded the knowledge in this field and exposed new
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phenomena that were never observed before. These may lead to the development of new
concepts in the growing research area aiming at exploiting superconductors in nano-

circuits.
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