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I Introduction  

The field of superconductivity had been considered as almost completely 

understood. However, after the exciting discovery of high-temperature 

superconductors (HTS) by Bednorz and Müller [1] and their followers [2-4], the field 

was opened once again. One of the most exciting developments in this reborn field is 

the discovery of new vortex phases, resulting in a rich phase diagram of the vortex 

matter. 

In 1957, Abrikosov [5] predicted that above the “lower critical field”, Hc1, 

magnetic field penetrates a type-II superconductor in a form of magnetic flux lines (or 

vortices), each carrying a quantum F0 = h/2e of magnetic flux. The superconducting 

order parameter is suppressed in this flux line, producing an “island” of a normal state 

surrounded by superconducting shielding currents flowing inside a superconducting 

“sea.” Abrikosov’s calculations showed that the vortices should be arranged in a 

hexagonal lattice, the so-called “Abrikosov lattice,” with a lattice constant 

21
00 )( Ha Φ≈ , where H is the applied field. This prediction was later confirmed 

experimentally by neutron diffraction on superconducting Nb [6] and magnetic 

decoration [7]. However, it soon became clear that the vortex lattice structure might 

be disturbed in the presence of defects in the atomic lattice. These defects pin 

magnetic flux lines and may cause distortions in the vortex lattice. Moreover, pinning 

does not allow the system to reach equilibrium immediately after the application of 

the magnetic field, which thus causes the experimental results of various 

measurements to be time dependent.  

In conventional, low-temperature superconductors (LTS), the Abrikosov 

lattice phase occupies most of the magnetic phase diagram, between the lower critical 
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field Hc1(T) and the upper critical field Hc2(T). Compared with LTS, HTS are 

characterized by much smaller coherence length, ξ, larger London penetration depth, 

λ, higher anisotropy (1/ε) of the electron mobility, and much higher transition 

temperature Tc [8, 9]. The combination of these parameters gives rise to a softer 

vortex structure and, consequently, to a rich field-temperature (B-T) magnetic phase 

diagram.  This is illustrated in Figure  I-1 that exhibits the vortex phase diagram for 

Bi2Sr2CaCu2O8+δ (BSCCO), which is deduced from small angle neutron scattering 

experiments (SANS) [10] and magnetic measurements [11]. SANS experiments 

reveal pronounced Bragg peaks at low fields and temperatures, signifying the 

presence of an ordered (or quasi-ordered) vortex phase. These peaks disappear as the 

field or temperature is raised above some characteristic value, signifying the 

disordering of the vortex structure. 

 

Figure  I-1. Phase diagram of the vortex matter in BSCCO, based on Ref. [11]. Insets: 
SANS data from Ref. [10]. 

This disordering is manifested in magnetic measurements as (a) either a sharp 

anomalous increase (referred to as the “second peak” or “fishtail”) in the width of the 
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magnetic hysteresis loop at lower temperatures (Figure  I-2) or (b) a sharp step in the 

reversible magnetization at higher temperatures. The line Bss(T) was interpreted as a 

vortex solid-solid transition line, separating between a quasi-ordered lattice (or Bragg 

Glass) and a disordered solid (or glass). The line Bm(T) at high temperatures was 

interpreted as a melting line, separating between a vortex lattice and a vortex liquid 

state. Solid-liquid transitions, identified by a step in the reversible magnetization, 

were also measured in other HTS materials, for example, in YBCO [12]. The first 

order nature of this transition was established from specific heat data [13]. In contrast, 

no signs were obtained for a solid-solid phase transition in specific heat 

measurements. Following these observations, theoretical models were developed [14-

19]. These models ascribe the solid-liquid transition to thermal fluctuations and the 

solid-solid transition to the disordered-induced fluctuations.  

Although the vortex phase diagram in BSCCO (Figure  I-1) is established, it 

remained unclear whether other HTS systems exhibit a similar vortex phase diagram 

and phase transitions. In this thesis, we address this issue comprehensively, focusing 

on the vortex phase diagram in the field and temperature range of the fishtail. 

 A fishtail, or a second magnetization peak, was observed in a variety of HTS 

crystals, such as YBa2Cu3O7-d (YBCO) [20-22], (La1-xSrx)2CuO4 (LSCO) [23], Tl-

based compounds [24, 25], and Hg-based compounds (HBCO) [26], and also in LTS 

crystals, such as CeRu2 [27] and NbSe2 [28]. However, in these materials the onset of 

the second peak was not as sharp as in BSCCO. In addition, the second peak in these 

materials was much broader and appeared in different field ranges. Thus, in materials 

other than BSCCO, the association of the second peak with a vortex solid-solid phase 

transition was questionable.   
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Figure  I-2. Local magnetic hysteresis loop measured in BSCCO [11] using miniature 
Hall probe. The fishtail onset field Bon, separating low-j and high-j regions, is associated 
with the solid-solid transition field Bss. 

Different mechanisms, for example, inhomogeneity of the sample ([20, 21]), 

matching effects [29], surface barriers [24], geometrical effects [23], dynamic effects 

[22, 30], structural phase transition in the vortex lattice [31], and vortex decoupling 

[32], were invoked as possible mechanisms for the appearance of the second peak in 

different materials.  

In this thesis, we present new data in Nd1.85Ce0.15CuO4-d, detwinned 

YBa2Cu3O7, and Bi1.6Pb0.4Sr2CaCu2O8+d and demonstrate that the fishtail in these 

materials can be associated well with a solid-solid phase transition, as in 

Bi2Sr2CaCu2O8+d [16, 17]. We find, in these systems, markedly different temperature 

dependence of Bss and succeed in quantitatively explaining these behaviors in the 

framework of the disorder-induced transition model developed by Ertas and Nelson 

[15] and Vinokur et al. [16].  

Another major topic of this thesis concerns the process of formation of the 

solid vortex phases. The thesis describes a pioneering work, in which the nucleation 

and growth of the vortex solid phases in BSCCO are revealed and studied, both 
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experimentally and theoretically. These results also shed light on the nature of the 

solid phases and the transition between them. 

In our experimental studies, we utilized unique local magnetic methods 

(namely, miniature Hall-probe arrays [32-38] and magneto-optics [39-45]) to image 

the magnetic induction on a specimen surface with spatial resolution on the order of 

micrometers and time resolution on the order of 40 milliseconds. The use of these 

methods is of special advantage for measurements performed in the irreversible state 

of superconductors in which the magnetic induction is highly non-homogeneous. 

This thesis is organized as follows. In the next Chapter, we describe the Hall-

probe array [46] and magneto-optic setups; the latter was specially designed and built 

as a part of this thesis. In Chapter III we describe a study of the vortex solid-solid 

transition in different superconducting crystals (Nd1.85Ce0.15CuO4-d, detwinned 

YBa2Cu3O7-d and Bi1.6Pb0.4Sr2CaCu2O8+d), using the Hall-Probe array system. We 

explain the markedly different transition lines obtained in these materials in the 

framework of the disorder-induced transition model [15, 16]. The main results of this 

chapter were published in Refs. DG3, DG4, DG8, DG10, DG13, DG14, DG17, listed 

in the Appendix. Our pioneering work on the process of the nucleation and growth of 

the vortex solid phases is described in Chapter IV. The main results of this Chapter 

were published in Refs. DG12, DG15, DG18, DG19. In Chapter V we analyze the 

experimental results of Chapter IV, employing the Landau-Khalatnikov dynamic 

equation. The main results of this chapter were published in Ref. DG20. Chapter VI 

summarizes the main achievements of this work and suggests directions for future 

experiments. The appendix lists the publications emanated from this work. 
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II Experimental 

Magnetic measurements can be classified into three major categories: global, 

local, and microscopic. Global techniques characterize the sample as a whole, 

yielding information on physical quantities averaged over the sample volume. In 

many cases, this information is not enough to characterize the state of the 

superconductor sufficiently. In particular, the information obtained in such 

measurements is incomplete in the irreversible regime, in which the magnetic 

induction inside the superconducting sample is non-uniform [47-50]. Similarly, such 

measurements are unable to reveal or characterize a coexistence of two different 

phases in a sample (as we do in Chapter IV using a local magneto-optic technique).  

Microscopic measurements, such as scanning tunneling microscopy or 

magnetic force magnetometry, are used for the study of individual vortices, but these 

measurements may not provide sufficient information about the vortex order on 

sufficiently large spatial scales. Moreover, these techniques mostly require ideal work 

conditions, which often cannot be provided when working with various materials. 

Local magnetic techniques are most suitable - in terms of their spatial and time 

resolution - for the experiments described in this thesis.  In this research, we utilize 

two complementary local magnetic measurement techniques: Micro-Hall-probes array 

(HPA) and magneto-optics (MO). HPAs manufactured by E. Zeldov at the Weizmann 

Institute were incorporated in a system built at our laboratory by Y. Abulafia [46]. A 

high-temporal resolution MO system was designed and built as a part of this thesis. In 

the following sections, we elaborate on each of these techniques. 
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II.1 Hall-probes array (HPA) 

The first step in overcoming the limitations of global magnetic measurements 

was taken in the early 1990s, when miniature single Hall-probes made of InSb were 

used [33, 51-53]. In addition, single probes of Bi films [35] GaAs/AlGaAs [34, 54, 

55] and doped GaAs [32] as well as arrays of doped GaAs sensors [56] were used in 

static and scanning modes. The technique was improved substantially by E. Zeldov et 

al., who developed (at the Weizmann Institute) arrays of Hall sensors based on the 

properties of a two-dimensional electron gas (2DEG) formed at a hetero-interface of 

GaAs/AlGaAs [57-59]. The GaAs 2DEG has a mobility of about 105 cm2/V sec at 80 

K and a carrier concentration of about 6.25 x 1011 cm-2, resulting in sensitivity of 

about 0.1Ω/G. These sensors have the advantage of a quick response to the magnetic 

field, large field and temperature working ranges, weak temperature dependence, and 

high sensitivity. The sensors are manufactured using well-established 

photolithographic and etching techniques. Figure  II-1 shows a photograph of the Hall-

probe array, manufactured at the Weizmann Institute. 

 

Figure  II-1. A photograph of the 11-element Hall-probe array, manufactured at the 
Weizmann Institute. The vertical line is a current channel; 11 horizontal lines are 
channels for Hall-voltage measurement.  



 8 

Figure  II-2 shows a schematic configuration of a Hall-probes array mounted 

on a sample. In practice, the sample is adhered to the surface of the GaAs using a 

low-melting-temperature wax. The sensors measure the component of the magnetic 

induction perpendicular to the sample surface.  

 

Figure  II-2. Schematic description of the micro Hall-probe array experiment. 

A photograph of a superconducting sample glued on an array is shown in Figure  II-3. 

 

Figure  II-3. Photograph of a superconducting sample glued on an array. 

Figure  II-4 shows a block-diagram of the system constructed by Y. Abulafia in 

our laboratory [46]. This system was used for the measurements presented in Chapter 

III. The field range of the measurements is –6.5 to 6.5 T. The temperature range is 4 K 

to 300 K. The time-resolution (in the mode in which all probes are active) is about 30 

s. The basic software was written by M. Katz and modified by Y. Abulafia and D. 



 9 

Giller to support advanced modes of measurements. For an extensive description of 

this system see Ref. [46]. 

��������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������

scanner

sample

Hall
probes

temperature
controller

ac-coil

dc-coil

heater

dc power
supply

ac current
amplifier

lock in
amplifier

2 cannels
synthsizer

CRYOGENIC SYSTEM

dvm

IBM PC

 

Figure  II-4. Block diagram of the Hall-probe array setup (from [46]). 

Hall-probe arrays allow direct detection of the magnetic induction distribution 

within a superconductor. Utilization of these miniature Hall-probe arrays enables a 

direct, model-independent derivation of some of the fundamental physical parameters 

of HTS, such as the position and time dependence of the apparent current j(x,t), the 

magnetic induction vector B, the position and time dependence of the electric field 

E(x,t), flux-line velocity v(x,t), and the position and time dependence of the effective 

activation energy U(x,t). [36, 38, 60, 61]. 

II.2 Magneto-optic (MO) technique 

II.2.1 MO indicators 

Magneto-optical method for local measurements of magnetic induction on the 

surface of superconductor [62, 63] was introduced in early 1960s [64]. This method 

2-channel 
synthesizer 
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utilized the Faraday effect - the ability of certain transparent materials to rotate the 

polarization plane of the light passing through them in the presence of a magnetic 

field. The angle of rotation is proportional to a component of local magnetic induction 

Bz, parallel to a direction of light propagation: 

 F zVB dα =  (2.1) 

where V is Verdet constant (a material property), and d is a length of light-path in the 

material. Such materials are called magneto-optically active. 

In the early magneto-optic experiments, thin (0.1 – 0.2 µm thick) magneto-

optically active EuS or EuF2 films were used. These materials have large Verdet 

constants (i.e., high sensitivity) only at temperatures as low as 10-15 K, thus allowing 

measurements only of conventional superconductors. In addition, these films must be 

deposited in a vacuum directly on a top surface of the superconductor, which is a 

complicated technique that often produces irregular indicator film properties. 

 A breakthrough in advancing the magneto-optic characterization was 

achieved in 1989, when Bi-substituted ferrimagnetic iron garnet thin films were 

suggested for indicator layers [65]. The main advantage of this material is a very large 

Verdet constant (several orders of magnitude larger than previous indicators), which 

persists up to very high temperatures (> 500 K). However, the resolution of such films 

with out-of-plane magnetization is limited by the width (2-10 µm) of the labyrinthine 

domains. Later, the spatial resolution and the sensitivity of this technique was 

significantly improved by the use of ferrimagnetic garnet films with in-plane 

anisotropy. Figure  II-5 shows the geometry of using such an iron-garnet film for 

magnetic flux visualization. Polarized light arriving normally to the surface first 

passes through a transparent substrate, and then enters also transparent magneto-
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optically active layer. In this layer, the component of the local induction is 

4 ( )z z zB M H Hπ= + , where Mz is a magnetization of the indicator film induced by 

the external magnetic field Hz. In turn, Hz is a field induced inside the indicator by the 

presence of a measured superconductor. The induction Bz causes the polarization 

plane of light to rotate according to equation (2.1). The light is then reflected from a 

thin gold or aluminium layer on the bottom of the indicator and experiences additional 

polarization rotation. 

 

Figure  II-5. Diagram of in-plane indicator film geometry [62]. 

The experimental setup for detecting the local distribution of the magnetic 

induction that we built is presented in Figure  II-6. 
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Figure  II-6. Experimental setup for the magneto-optical system (adapted from Ref. 
[66]). 

This setup includes a “Leica” polarizing microscope, in which low-strain 

objectives x2.5, x5 and x10 for polarized light are installed and in which it is possible 
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to switch between the magnifications. Polarizer and a 360∞-rotating analyzer are parts 

of this microscope as well. The magneto-optic indicator (specially purchased in 

Russia) is lying on the superconducting sample glued on the cold finger of a helium-

flow cryostat. The temperature is controlled using a resistive heater and AlGaAs-

diode temperature sensor, connected to a “Lakeshore-330” temperature controller. 

The magnetic field is produced by a “Lip-LPS-2306D” (dual 0-30V, 0-6A) power 

supply in a coil lying on the cryostat, around a pillar in a manner such that the sample 

is located exactly in the middle of the coil.  This assures maximal homogeneity of the 

applied field. The light generated by a halogen/mercury lamp passes through a green 

filter1 to avoid dispersion of the indicator response. The light then meets a polarizer, 

where the light obtains linear polarization. After being converged by one of the 

special low-strain microscope objectives (x2.5, x5, x10) designed for work with 

polarized light, the light enters the cryostat through a low-strain quartz window of the 

cryostat. Then, while passing through the indicator film, the polarization of the light is 

rotated locally as a function of the local magnetic induction. After being reflected 

from the reflective layer on the bottom of the indicator, the light exits the cryostat and 

passes through the analyzer, about 90∞ angled relative to the polarizer. The resulting 

image arrives at a cooled low-noise “Hamamatsu 4880-80” digital CCD camera 

transferring the digital images to a PC. This camera is capable of capturing 25 full 

(656 x 494) frames per second. The distance between neighboring pixels in the 

resulting image is defined by the objective magnification and is 1.98 µm for the 

largest magnification of x10. This, however, usually does not limit the overall 

                                                 

1 The MO activity vs. wavelength curve has a peak in the vicinity of 530 nm. 
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resolution of the system, which is limited mostly by the finite thickness of the 

indicator (up to 5 µm thick). 

 The exposure time is regulated by an electronic shutter and varies from as low 

as 0.1 ms to as high as several minutes, thus allowing imaging of both a rapidly 

changing scene and a static, low-illuminated scene. 

A typical magneto-optical image obtained using an in-plane anisotropy 

indicator is shown in Figure  II-7.  

 

Figure  II-7. Magneto-optic image of BSCCO thin strip 0.2 s after application of an 
external magnetic field of 350 Oe. Brighter and darker areas correspond to higher and 
lower induction, respectively. One-dimensional profiles are taken along the drawn 
horizontal line.  

The teeth-like magnetic domain walls seen in the middle of the indicator 

disturb the image. The larger the sample, the less disturbed are the domain walls. Our 
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setup allows measurements in magnetic fields of up to approximately 300 Oe without 

time limit (the coil is not heated up), 500 Oe up to 2 min, 1000 Oe up to 20 sec. It 

supports either time-resolved (minimum of 40 ms time resolution) or static 

measurements with varying fields or temperatures. 

II.2.2 Data processing 

Images obtained from the CCD camera are, of course, not calibrated, and truly 

reflect the variation in polarization of the incoming light. The calibration curve 

depends on magneto-optic parameters (Verdet constant and M(H) curve) of the 

specific indicator at the specific temperature. 

 In our measurement protocol, a calibration procedure is performed before 

each set of measurements. It includes capturing (a) a “dark” image (DI), which is 

taken when the aperture of the camera is covered; (b) zero-field image (ZFI), taken 

after zero-field cooling the sample (DI and ZFI are usually averaged from 

approximately 100 frames captured, one after another, to minimize noise induced by 

calibration); and (c) a sequence of images taken after the applied field is activated and 

raised gradually with small steps, while capturing images at any applied field value. A 

table of calibration is then prepared, based on the intensity measured at a point p 

located far away from the sample, assuming that the value of the magnetic field (Hz) 

at this point equals the value of the external field. (In practice, the intensity at p is 

averaged over n ¥ n pixels (usually n = 3)). We define a calibration curve F:  

 
( )p z p

p p

I H ZFI
F

ZFI DI
−

=
−

, (2.2) 

where Ip(Hz) is the measured intensity when the field is Hz, and ZFIp=Ip(Hz=0). The 

denominator in Eq. (2.2) is expected to be proportional to the illumination intensity Ilp 

at the point p. If the magneto-optical activity A(Hz) is uniform across the indicator 



 16 

film, then the numerator in Eq. (2.2) is proportional to A(Hz)Ilp. We thus obtain from 

Eq. (2.2) that F µ A(Hz), leading to the conclusion that F is defined unequivocally by 

the local magnetic field Hz. Any measured image can now be translated to a 2D Hz 

distribution. This is done in two steps. First, the measured intensity distribution is 

converted to a F-distribution: F = (I – ZFI)/(ZFI – DI). Then, the F-image is 

converted to a Hz-image by using the F(Hz) table defined by (2.2).  

II.3 Geometry of samples 

In all the experiments described in this thesis, the samples measured had a thin 

strip geometry (t << d << l) as in Figure  II-8.  

x

yz

2b

2w

2d

H

 

Figure  II-8. Sketch of a thin strip geometry used in this research.  

This geometry has the advantage of the possibility of making relatively simple and 

comprehensive analyses, based on one-dimensional profiles only, taken across the 

sample width. In our analyses, we assume that the persistent current density j, together 

with the electric field E, have only y-components, which are uniform across the z-

dimension.  

2d 

t 
l 
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III Disorder-induced vortex phase transition 

The width of the magnetic hysteresis loop is expected to decrease with the 

external field (for fields larger than the full penetration field) [67]. Such “normal” 

loops are usually observed in samples, that have many intrinsic defects, for example, 

thin films and polycrystalline materials. An anomalous behavior in the magnetization 

curve was reported in crystals of various materials (see Chapter I). In these materials, 

the width of the magnetization loop first decreases as expected. Then, at some field 

Bon, the width starts to increase up to a field Bp and decreases again above this field. 

This anomaly was called a “second peak” or, because of its shape, a “fishtail.” This 

fishtail has different characteristics in different materials. For example, in 

YBa2Cu3O7-d the peak is broad and appears in the Tesla range, whereas in 

Bi2Sr2CaCu2O8+d the peak is sharp and is found in the range of hundreds Gauss. 

During the last decade, several explanations for this anomaly were proposed 

[20-24, 29-32]. However, the observed different characteristics questioned the 

possibility of a common physical origin for different HTS materials. 

Experimental observations of an extremely sharp second peak in BSCCO [11, 

68] motivated a new approach, suggesting that the fishtail is associated with a vortex 

phase transition from quasi-ordered to a disordered solid vortex state. Indeed, 

evidence for two distinct solid vortex phases in BSCCO was obtained in neutron 

diffraction [10] and mSR [69] experiments. Following these observations, a theoretical 

model was developed [14-19] describing a mechanism for a disordered induced 

transition. 

The essence of this model is that the vortex phase diagram is determined by 

the interplay among three energy scales: the vortex elastic energy Eel, the energy of 
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thermal fluctuations Eth, and the pinning energy Epin. The competition between the 

first two determines the melting [57], and the competition between the last two 

determines the irreversibility line. The competition between the elastic energy and the 

pinning energy determines the order-disorder solid-solid transition field Bss: At low 

fields the elastic interactions govern the structure of the vortex solid, forming a quasi-

ordered lattice [19]. Above Bss, however, disorder dominates and vortex interactions 

with pinning centers result in an entangled solid in which cells of the vortex lattice are 

twisted and dislocations proliferate. [14-19]  

This disorder-induced transition model was successfully applied in Refs. [16, 

70] to explain the temperature-independent solid-solid transition line in BSCCO and 

its value at zero-temperature. In this chapter we present results of local magnetization 

measurements in variety of high-temperature superconducting crystals as a function of 

temperature, field and time. We exploit these measurements for the identification of 

the vortex solid-solid phase transition in these crystals. We find that the transition 

field exhibits qualitatively different temperature dependence in different materials. 

We show, however, that despite these differences, the behavior of the transition field 

can be explained quantitatively on the basis of the disorder-induced transition model 

mentioned above.  

This Chapter is organized as follows. In Section III.2 we present the raw data 

of Hall-probe array measurements in different HTS crystals, identify the phase-

transition field, and plot the transition line Bss(T) in the B-T phase diagram.  In Section 

 III.2 we analyze these data on the basis of the disorder-induced transition model and 

demonstrate that the different behaviors of the transition lines are associated with the 

different characteristics of vortex-pinning and vortex-vortex interactions in the 

various crystals. 
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III.1 Identification of vortex phase transitions in different materials 

In this section we present results of local magnetization vs field (m vs. H), 

magnetization vs. temperature (m vs. T), and magnetization vs. time (m vs. t) for three 

different HTS materials. Table  III-1 lists these materials and summarizes their 

properties. For comparison, we also include the properties of BSCCO. 

 Tc, K ε s, nm ξ, nm λ, nm 

Bi2Sr2CaCu2O8+d 90 ~1/100 1.5 2-4 140-200 

Nd1.85Ce0.15CuO4-d 23 ~1/30 0.6 8 100 

YBa2Cu3O7-d 93 1/12 1.2 1.2 – 1.8 140 

Bi1.6Pb0.4Sr2CaCu2O8+d 95 1/68 1.54 1 - 10 100-200 

Table  III-1. Critical temperature Tc, anisotropy ε, interlayer distance s, coherence length 
ξ, and London penetration depth λ, for Bi2Sr2CaCu2O8+d, Nd1.85Ce0.15CuO4,    
YBa2Cu3O7-d, and Bi1.6Pb0.4Sr2CaCu2O8+d. 

The results presented below indicate a vortex solid-solid phase transition in all 

these materials. We identify the phase transition field and measure its temperature 

dependence. The results reveal markedly different behaviors.  

III.1.1 Nd1.85Ce0.15CuO4-d 

The first material studied was Nd1.85Ce0.15CuO4-d (NCCO), a layered HTS 

with a relatively large anisotropy (e ~ 1/30 [71, 72]), but which has, however, a 

relatively low transition temperature (Tc ~ 23 K). As we see below, this choice 

ensured a lack of thermal fluctuations interference. Thus, if the second peak is due to 

a disorder-induced transition, it must be determined by a pure competition between 

elastic and pinning energy in this material. 
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III.1.1.1 Local magnetization curves in NCCO 

 Figure  III-1 displays three typical local magnetization hysteresis loops 

measured by HPA technique (see Chapter II) at different temperatures. As expected, 

the width of the loops decreases with temperature. As clearly observed, the onset of 

the second peak at Hon is a decreasing function of temperature. 
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Figure  III-1. Local magnetization vs applied (external) field H in NCCO at the indicated 
temperatures. The onset fields Hon are marked with arrows. 

The onset of the second magnetization peak at Hon for NCCO (marked by arrows in 

Figure  III-1) is almost as sharp as in BSCCO (see Figure I-2) and occurs at the same 

induction field B (2) for all the probes. This is illustrated in Figure  III-2, which shows 

partial magnetization curves measured at different locations on the sample surface.  

                                                 

2 Here, and further in this work, the “induction B” refers to the component of B normal to the 

sample surface, as detected by our local magnetization techniques. 
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Figure  III-2. Comparison between local gradient dependence on local induction (left-
hand plot) and external magnetic field (right-hand plot) for two locations on the sample 
surface (T = 16 K). The onset of the second peak occurs at the same local induction, but 
at different external fields. 
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Figure  III-3. Temperature dependence of the onset of the second peak Bon (squares) and 
the irreversible field Birr (circles). The dashed line is a guide to the eye. The solid line is a 
fit of the experimental data as discussed in section  III.2.2. The dotted line illustrates the 
upper critical field Bc2.  

Figure  III-2 exhibits dB/dx vs. B (left), and dB/dx vs external magnetic field H. The 

onset of the second peak occurs at Bon =180 G for all the probes.  
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The squares in Figure  III-3 describe the temperature dependence of Bon. Note 

that Bon is a continuous function of temperature all the way up to Tc – 1.5 K, above 

which the anomaly is difficult to resolve. Also shown in Figure  III-3 is the 

irreversibility field Birr (circles), measured as the field, above which the ascending and 

descending branches of the hysteresis loop coincide. There is no indication in our data 

for a “jump” of the magnetization in the reversible state - a jump that would indicate a 

first-order melting transition [57]. In the following, we show that Bon also marks a 

change in the magnetic induction profiles. We also show a crossover in the creep 

mechanism around the fishtail peak. 

III.1.1.2 Induction profiles 

Figure  III-4 shows typical magnetic induction profiles measured at 16 K.  
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Figure  III-4. Typical induction profiles at 16 K across the NCCO sample for indicated 
fields H. For inductions in the bulk below Bon ª 180 G, the profiles exhibit a maximum 
(around 120 mm) typical of surface and geometrical barriers in presence of weak bulk 
pinning. For inductions above Bon, the profiles are Bean-like with much larger gradients, 
indicating the onset of strong pinning. 
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For fields below Bon the profiles have a shape characteristic of geometrical barriers 

with weak bulk pinning [73], exhibiting maxima around 120 mm from the center. For 

fields above Bon, the profiles are Bean-like with much larger gradients, indicating the 

onset of strong pinning. The figure demonstrates that a small change, < 20 G around 

200 G causes the transition between the two types of profiles. 

III.1.1.3 Local relaxation measurements in NCCO 

To complete the picture in NCCO, we performed local magnetic relaxation 

measurements, from which we were able to determine a creep mechanism, utilizing 

the technique described in Refs. [36, 38, 60] for calculation of the activation energy U 

as a function of electric current density j for various fields. The analysis is based on 

the calculation of the electric field E [36, 38, 60, 61], using the Maxwell equation: 

 ( )
0

,1( , )
x

z
y

B t
E x t d

c t
ξ

ξ
∂

= −
∂∫  (III.1) 

where c is the velocity of light, assuming infinitely long strip geometry (see section  

II.3). The electric field is induced by flux motion. Flux velocity is determined from: 

 1E v B
c

= ×
G GG  (III.2) 

For a thermally activated creep  

 ( )0 exp /v v U kT= −  (III.3) 

where U is the activation energy, and the velocity v0 corresponds to the flux-flow 

equation [36]: 

 0
0v A j

cη
Φ

= −  (III.4) 
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where A is constant of order 1, and η is Bardeen-Stephen viscosity3. Finally one gets a 

relation between activation energy U and current density j: 

 
0

ln c EU kT
ABj

η 
= −  Φ 

 (III.5) 

Typical results are shown in Figure  III-5 for T=13 K. The figure demonstrates a clear 

crossover in the slope of U(j) around B ≈ 900 G. 
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Figure  III-5. Activation energy U for flux creep as a function of current density j at T=13 
K, for various fields. The squares and the circles refer to fields below and above the 
peak, respectively. A crossover in the slope of U(j) near B=900 G is evident. The right 
arrow indicates the increase of U as B increases from 540 to 640 and 940 G. The left 
arrow indicates the decrease of U as B increases from 1130 to 1430 and 1630 G. 

It further demonstrates a non-monotonous dependence of U on B; U increases with B 

for fields below 900 G and decreases with B above this field, as indicated by the right 
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= , where ρn is a normal state resistivity. The calculated value of η for NCCO at T 
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and left vertical arrows in Figure  III-5, respectively. Although the increase of U with 

B is consistent with elastic creep, the decrease of U with B is evidence of plastic 

vortex creep associated with the motion of dislocations in the vortex lattice [74]. It 

should be noted that, although dislocations may start to form immediately above Bon ≈ 

200 G, plastic creep cannot dominate the dynamics until the activation energy Upl for 

plastic creep drops below the activation energy Uel, for the collective (elastic) creep. 

In the case shown in Figure  III-5, this crossover occurs around B = 900 G.  

Appearance of dislocations at high fields indicates that the nature of the high-

field phase is disordered; therefore, one may conclude that an order-disorder phase 

transition occurs at Bon. 

III.1.1.4 Local magnetization vs. temperature measurements in NCCO 

The scenario of a vortex phase transition was further examined by 

measurements of magnetization vs. temperature. If the second peak is a dynamic 

phenomenon, resulting from a competition between a decreasing jc(B) and increasing 

Uc(B) (4) [22], then no feature in m(T) is expected in the framework of the collective 

creep theory, because both jc(T) and Uc(T) are decreasing functions of T. If, on the 

other hand, the "fishtail" originates from a transition corresponding to a definite value 

of magnetic induction at any temperature, then some feature corresponding to this 

transition must be observed in a temperature sweep as well when crossing a transition 

line. 

                                                                                                                                            

= 13 K is 93.5 10
sec

g
cm

−⋅
⋅

. 

4 In the collective creep theory: U = Uc(B)f(j/jc). 
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In the following, we compare the results of two kinds of magnetic 

measurements: mT(H), in which the local magnetization is measured vs H at constant 

temperature (examples of results of such measurements are shown in Figure  III-1 and 

Figure  III-2), and mH(T), in which the local magnetization is measured vs T at 

constant field. Figure  III-6 shows typical mH(T) data for NCCO.  
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Figure  III-6. Magnetization vs. temperature (mH(T)) curves for external fields H = 600 
Oe and H = 200 Oe, obtained after zero-field cooling. For fields H > Bon(0) = 270 Oe, no 
special feature is observed, and for H < Bon(0) sharp kink at Tk is found. Inset: 
development of the kink in mH(T) curves (H = 200, 175, 150, and 100 Oe) for different H 
< Bon(0).  

In Figure  III-6 we exhibit several curves at the indicated fields. Note the 

abrupt increase in the local magnetization at field-dependent temperatures Tk(B), 

which are marked by arrows. These anomalies are observed in a limited field range: 

H < 270 Oe for NCCO. The temperatures Tk(B) are plotted (note that B ~ H in the 

range of Tk - in any event, the difference between B and H cannot explain the shown 

phenomenon) in Figure  III-7 (open symbols), together with Bon(T). Apparently, these 

lines are markedly different for NCCO and, yet, we maintain that the discrepancy 

between these lines is not inconsistent with the transition scenario, as we explain 

below. 



 27 

4 8 12 16 20 24
0

100

200

300
 Bon(T)
 Tk(B)

B 
[G

]

T [K]
 

Figure  III-7. Bon(T) and Tk(B) curves in the phase diagram of NCCO.    

In NCCO, Bon decreases with temperature. Thus, crossing the Bon(T) line by 

raising the temperature at a constant field corresponds to a phase transition from a 

quasi-ordered state with low persistent current, to a disordered vortex state with 

relatively high current. In this case, flux should be expelled from the sample, that is, 

should move in a direction opposite to the Lorentz force. Inasmuch as this process is 

inhibited, the induction profile within the sample, and consequently the persistent 

current j, are ”frozen”, and the magnetization mH(T) is constant, similar to what is 

obtained in standard field-cooled measurements. Only when a high enough 

temperature is reached, at which the persistent current jT(H) is smaller than the frozen 

value of jH(T), can flux enter the sample. This is manifested by a change in the slope 

of mH(T). This explanation is further illustrated in Figure  III-8, in which mT(H) curves 

(solid circles) are mapped onto the mH(T) curve (open squares) in NCCO. 
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Figure  III-8. mH(T) and “mapped” data points for mT(H), demonstrating “freezing”. 

The two curves coincide up to the solid-solid transition temperature, after which 

mH(T) freezes and lies above the data mapped from mT(H). Only when mH(T) = mT(H) 

can flux enter and the two data sets again coincide. We conclude that although the 

anomalies in mH(T) are associated with the vortex solid-solid phase transition, the 

location of the anomalies does not necessarily indicate the location of the transition. 

III.1.1.5 Summary of the experimental results in NCCO 

Magnetization vs. field (m vs. H) in NCCO crystal reveals as sharp onset of the 

second peak, as in BSCCO at local induction Bon. Relaxation measurements in NCCO 

demonstrate a crossover in the creep mechanism in the vicinity of the second peak 

field Bp, from elastic to plastic creep, thus indicating a disordering (related to 

dislocations proliferation) of the vortex matter induced by field increase. The 

induction profiles exhibit sharp crossover near Bon from the structure typical of 

surface and geometrical barriers in the presence of weak bulk pinning to Bean-like 

profile-structure: This crossover results from the onset of the strong pinning at Bon. In 
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addition, a kink in m vs. T of NCCO is observed in the range of fields where Bon is 

found. However, the location of this kink in the (B,T) phase diagram does not coincide 

with the location of Bon. This is explained as a consequence of the decreasing Bon(T) 

line in NCCO, resulting in freezing of flux when the  Bon(T) line is crossed through a 

temperature increase.  

All these measurements point to a vortex solid-solid phase transition. 

III.1.2  YBa2Cu3O7-d 

In twinned YBa2Cu3O7-d, the usually observed smeared peak with unresolved 

onset was difficult to associate with a vortex phase transition. Only recently, 

measurements in untwinned YBa2Cu3O7-d revealed a well-resolved second 

magnetization peak [75, 76], similar to that observed in Bi2Sr2CaCu2O8+d and 

Nd1.85Ce0.15CuO4-d crystals. However, the peak is still broad and the identification of 

a specific feature that would possibly mark a phase transition remains unclear. As we 

shall clarify below, this identification becomes critical in YBCO, because values and 

temperature dependences of various features differ greatly. 

In this section, we present local magnetic measurements in an untwinned 

YBa2Cu3O7-d crystal as a function of temperature, field and time, revealing anomalies 

occurring along the same line Bk(T) in the field-temperature plane. These include: (1) 

an abrupt increase in the local magnetization vs. temperature; (2) a pronounced time-

independent kink in the magnetization vs. field curves; (3) a marked change in the 

behavior of the magnetic relaxation rate with field; and (4) change in the scaling 

behavior. 
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III.1.2.1 Samples 

Untwinned YBa2Cu3O7-d crystals (Tc ≈ 93 K) were grown by quenching the 

tetragonal phase during flux growth. Two of them from the same batch were 

measured in the framework of this work: E1 sample with dimensions 0.5 x 0.3 x 0.02 

mm3 and Y1 sample with dimensions 0.6 x 0.35 x 0.02 mm3. [77] Although we 

mostly concentrate in this thesis on results obtained for sample E1 (the results for the 

two samples are qualitatively the same), we perform quantitative comparison 

between the results for these two samples in Sections  III.1.2.7 and  III.2.3.1. This 

comparison is a powerful tool for testing a theory. 

III.1.2.2 Local mgnetization curves in YBCO 

The local magnetization of the E1 sample was measured as a function of field 

at a constant temperature, in the range 40 to 90 K. Typical results, for T = 60 K, are 

shown in Figure  III-9.  
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Figure  III-9. Local magnetization m=B-Bedge in YBCO at the indicated temperatures. 
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A well-resolved onset of the second peak, similar to that reported for 

Bi2Sr2CaCu2O8+d [11] and Nd1.85Ce0.15CuO4-d (see section  III.1.1.1), is observed here. 

We call attention to the pronounced kink at a field Bk in between the onset-field Bon 

and the peak-field Bp as indicated in Figure  III-9. The temperature dependence of Bk is 

shown by open circles in the magnetic phase diagram of Figure  III-10, together with 

the irreversibility line (crosses - determined from the coincidence of the ascending 

and descending branches of the magnetization curves), and the melting line (diamonds 

- determined by a discontinuity in ∆m(T) in the reversible regime: noisy data in the 

reversible regime was averaged to reveal the jump in the magnetization associated 

with the melting. This process yielded results consistent with curves obtained in other 

works [78-81]. No jump could be revealed above 20 kG.) 
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Figure  III-10. Magnetic phase diagram for the YBa2Cu3O7-d crystal showing the 
temperature Tk of the abrupt increase in m(T) (solid circles), the kink-fields Bk in m(H) 
curves (open circles), the peak-field (triangles), the onset-field (dots), the irreversibility 
line (crosses), and the melting line (diamonds). Solid lines are theoretical fits (as 
discussed in section  III.2.3). 
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III.1.2.3 Local magnetization vs. temperature measurements in YBCO 

The local zero-field-cooled magnetization, mzfc, and the field-cooled 

magnetization, mfc, of the same YBa2Cu3O7-d sample were measured as a function of 

temperature at a constant field, in the range 1 kG to 55 kG. To compensate for the 

temperature dependence of the sensors’ background, we subtract mfc from mzfc. 

Figure  III-11 presents ∆m = mzfc - mfc for three representative fields: 8, 16 and 40 kG 

applied parallel to the c axis.  

 

Figure  III-11. Difference between the zero-field-cooled and the field-cooled local 
magnetization in untwinned YBa2Cu3O7-d plotted vs. temperature for 8, 16 and 40 kG 
fields applied parallel to the c axis. The abrupt increase at Tk ≈ 71 K for the 16 kG curve 
is marked by an arrow. The inset shows data for several fields between 11 and 25 kG. 

The 16 kG curve exhibits an abrupt increase at Tk ≈ 71 K, as indicated in the figure. A 

similar feature is observed for all fields between 11 and 25 kG, see inset to Figure  

III-11. The temperature Tk increases with the field, as described in Figure  III-10 (solid 

circles).  

This feature disappears below 11 kG and above 25 kG where a smooth curve is 

observed, as represented in Figure  III-11 by the 8 and 40 kG curves, respectively. 
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Note, however, the change in the shape of these two curves. The 40 kG curve exhibits 

a linear increase over a wide temperature range, and the 8 kG curve is nonlinear. 

A central result here is that the line defined by Bk (open circles) coincides 

with the line defined by Tk (solid circles), suggesting a phase transition in the vortex 

system across this line. Evidently, the line defined by Bk(T) divides the irreversible 

phase into two regions, suggesting that Bk is a transition line between two solid 

phases of the vortex system. We note here that, in contrast to BSCCO, in which all 

the features of the second peak are located in a relatively dense manner and have 

qualitatively similar behavior, in YBCO the choice of the feature signifying phase 

transition is highly important, because the temperature dependences are qualitatively 

different for different features (see Figure  III-10). 

III.1.2.4 Local relaxation measurements in YBCO 

We show, in Figure  III-12, the evolution of the second peak with time in the 

time range 10 to 3000 sec (solid squares) and the relaxation rate dm/dlnt vs. field 

(triangles). It is evident from Figure  III-12 that, in contrast to the peak-field, which 

drifts with time to lower fields, the kink-field Bk is time independent. As indicated in 

the figure, the relaxation rate dm/dlnt (triangles) exhibits a minimum at Bk, a behavior 

consistent with the observation of time-independent Bk.  
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Figure  III-12. Local magnetization of the YBa2Cu3O7-d sample as a function of field as 
measured at T = 60 K. The solid squares describe the evolution of m(B) with time 
between 10 and 3000 sec. The relaxation rate (right-hand ordinate) is indicated by 
triangles. 

The temperature dependence of the peak-field Bp, in the short time limit, is 

also included in Figure  III-10 (triangles). As mentioned above, the peak-field drifts 

with time to lower fields, indicating that Bp(T) cannot be a phase transition line; it 

signifies a crossover in the dynamics, from elastic to plastic flux creep (see [74] and 

DG5). Note that the temperature dependence of Bp is qualitatively different from that 

of the phase transition line Bk.  The lines Bk(T) and Bp(T) meet at approximately 73 K, 

above which the anomalous second peak splits into two peaks, as previously reported 

by Deligiannis et al. [75]. A kink in the magnetization curve is now observed in 

between the two peaks. The Bp and the Bk data of Figure  III-10, above the crossing 

point T = 73 K, represent the location of the lower peak and the kink that appears 

above it, respectively.  
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III.1.2.5 “Scaling” of the magnetization curves in YBCO 

More evidence for a phase transition at Bk is illustrated in Figure  III-13: 

Scaling of the magnetization curves at different temperatures in a field range, which 

includes Bk is unsuccessful.  
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Figure  III-13. Scaled magnetization curves for YBCO between 55 and 70 K. Attempts to 
scale the curves in the whole field range are unsuccessful. However, separate scaling can 
be obtained for fields (a) larger and (b) smaller than Bk. 

However, as demonstrated in Figure  III-13a, the magnetization curves can be 

perfectly scaled above and below Bk separately. Above Bk (Figure  III-13a), the 

a) 

b) 
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magnetization curves are scaled by the peak field Bp and the magnetization peak value 

mp. Below Bk (Figure  III-13b), the scaling parameters are the onset field Bon and the 

magnetization mon at that field. The perfect scaling above and below Bk suggest the 

different nature of the vortex matter states above and below this field. This result, 

together with the accumulated results mentioned above, indicate that the kink field 

marks the vortex solid-solid phase transition. 

III.1.2.6 Identification of Bk as the field of phase transition in YBCO 

As we have shown, local magnetic measurements in an untwinned 

YBa2Cu3O7-d crystal (as a function of temperature, field and time) exhibit anomalies 

along the same line Bk(T), which is identified as a transition field between two vortex 

solid phases.   

As is clear from Figure  III-11 and Figure  III-10, the local magnetization vs. 

temperature exhibits an abrupt increase in a limited field range only, corresponding to 

the increasing branch of Bk(T). Crossing this branch by raising temperature at a 

constant field corresponds to a phase transition from a state with relatively high 

persistent current to a state with low current. This phase transition is accompanied by 

a burst of flux lines penetrating the sample, manifested by an abrupt increase in the 

magnetization. This feature is absent when further raising the temperature to cross the 

Bk(T) line along its decreasing branch. This is because the system crosses from a high-

current to a low-current state, that is, flux should be expelled from the sample, a 

process that is impeded by the presence of an external field (similarly to the 

phenomenon observed in NCCO, see  III.1.1.4). The transition in this case is 

manifested by a slight decrease in dm/dT at the transition. For fields larger than 25 kG 

and smaller than 11 kG, raising the temperature does not lead to crossing of the Bk(T) 

line and, thus, no sign of a phase transition is observed in m(T) measurements.  
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As we mentioned, the three fields indicated in Figure  III-10, Bon, Bk, and Bp, 

characterize the anomalous second peak in the untwinned YBa2Cu3O7-d. We identified 

Bk as a transition field between two vortex solid phases and Bp as related to a dynamic 

crossover from elastic (collective) to plastic flux creep. The increase of the persistent 

current at onset field Bon probably originates from the transient phenomena described 

in Chapter IV. 

III.1.2.7 Quantitative comparison of different YBCO samples 

In this section, we compare data measured in two YBCO samples, denoted as 

Y1 and E1 (see  III.1.2.1). This comparison will enable us to extract relationships 

between important pinning characteristics, such as disorder parameter γ and single 

vortex depinning temperature Tdp, for the two samples and a similar relationship 

between Bk(T→0). These relationships will help us test the disorder-induced transition 

model in the theoretical section  III.2.3.1.  

The width of the magnetization loop at low and high magnetic fields far from 

the transition was extracted at the same temperature for both samples, as well as the 

value of the transition field Bk(T→0) (see Table  III-2).  The results of comparison are 

presented in the following table: 

 Sample Y1 Sample E1 

Bk(0), kG 7 11 
∆mlow, G 182 113 
∆mhigh, G 1000 700 

Table  III-2. Comparison of two YBCO samples. First row: Bk(T→0). Second and third 
rows: width of the magnetization loop ∆m for T = 55 K at H = 1000 Oe and H = 40 kOe, 
respectively. These values were probed at the same distance of about 130 µm from the 
edge to ensure that the ratio between ∆m for the two samples represents a ratio between 
persistent currents. 
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We find that, consistently, the hysteresis loop is wider in the sample Y1 than in the 

sample E1: both ∆mlow and ∆mhigh are larger for Y1 than for E1. This fact indicates 

that the pinning in Y1 is stronger. To estimate the ratio between disorder parameters γ, 

characterizing pinning strength, for Y1 and E1, we assume here that at low fields 

vortices are pinned in a single vortex (SV) regime. Because in this 

regime 2/ 3
cj j∝ ∝ γ  [8], and, in general, j m∝ ∆ , we obtain 

3/ 2
( 1) ( 1)
( 1) ( 1)
Y m Y
E m E

 γ ∆
 γ ∆ 

� . 

Calculation then yields ( 1) 2
( 1)
Y
E

γ
≈

γ
 under an assumption that at H = 1000 Oe, the creep 

is governed by SV regime, that is, taking ∆m = ∆mlow.  

We are also able to extract the relationship between depinning temperatures 

Tdp for samples Y1 and E1, which is determined by 1/ 3
dpT ∝ γ  [8], yielding 

( 1)
1.25

( 1)
dp

dp

T Y
T E

≈ .  

Finally, from Table  III-2 we extract ( 1) 0.64
( 1)

k

k

B Y
B E

≈ . This experimentally 

obtained ratio will be compared with a theoretically predicted one in Section  III.2.3.1. 

III.1.2.8 Summary of the experimental results for YBCO 

Magnetization vs. field (m vs. H) in YBCO crystals reveals as sharp onset of 

the second peak, as in BSCCO and NCCO. We also observe, for the first time, a 

pronounced kink in m vs. H curves of YBCO. This kink’s location on the (B,T) phase 

diagram of YBCO coincides with a no less pronounced kink in magnetization vs. 

temperature (m vs. T) curves; the latter is observed in a range of fields that is exactly 

the range where Bk is observed. The kink field Bk is also signified by a minimum in 

the relaxation rate. It is not moving with time, in contrast to another characteristic 
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field Bp, the field of the second peak. We also find that magnetization loops measured 

at different temperatures may be “scaled,” either for fields lower than Bk or for fields 

higher than Bk, supporting the existence of different vortex phases below and above 

Bk. All these results point to a vortex solid-solid phase transition in YBCO occurring 

at the kink field Bk, rather than the onset field Bon. 

The kink in m vs. T curves of YBCO is observed in the range of fields where 

Bk is found. However, in contrast to NCCO, the location of this kink in the (B,T) 

phase diagram does coincide with the location of Bk in m vs H curves. This is 

explained by a different behavior of the solid-solid transition line: It decreases in 

NCCO and increases in YBCO. 

III.1.3  Bi1.6Pb0.4Sr2CaCu2O8+d 

Our next step was to investigate a system with high Tc, as, for example, in 

BSCCO, but with a somewhat reduced anisotropy. For this purpose we analyzed the 

"fishtail" data obtained for BSCCO after Pb-doping, known to reduce the anisotropy 

without affecting much Tc. In this section, raw data measured for 

Bi1.6Pb0.4Sr2CaCu2O8+d (Pb-BSCCO) are presented. These data were measured in our 

laboratory by M. Baziljevich and Y. Abulafia (for more details, see Ref. DG17 in the 

Appendix). We performed the analysis presented in Section  III.2.4 of this thesis. 

III.1.3.1 Local magnetization curves in Pb-BSCCO 

Figure  III-14 shows typical magnetization loops m=B4-B8,9 measured for the Pb-

doped sample, plotted against the local induction B4.  
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Figure  III-14. Magnetization loops m=B4-B8,9 plotted against the local induction B4, for 
the Pb-BSCCO crystal at 84, 88 and 92 K. 

Probe 4 is located close to the sample center, whereas B8,9 is the average signal 

of probes 8 and 9, which are located close to the neutral line position. At the neutral 

line, B is approximately equal to the applied field H. The three loops in Figure  III-14 

were obtained at 84, 88, and 92 K, illustrating the particular temperature dependence 

of the magnetization in this temperature range near Tc. The sample exhibits a distinct 

second peak, that is, a strong increase in the magnitude of the magnetization in an 

intermediate field range. Experimentally, one may define three characteristic fields, 

which are indicated in the figure: Bon, Bsp, Birr. The temperature dependence of these 

characteristic fields forms a phase-diagram in the B-T plane. 
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The phase diagram obtained for the Pb-doped sample in the temperature range 

15-92 K is presented in Figure  III-15.  

 

 

Figure  III-15. Magnetic phase diagram defined by the fields Bon, Bp, and Birr, determined 
for the Pb-BSCCO sample. 

All the fields (Bon, Bsp, and Birr) are found to exist over this whole temperature 

interval. Between 25 and 50 K, the value of Bon is approximately constant. The value 

then slightly increases and after 70 K decreases rapidly, together with the other 

characteristic fields, as T approaches Tc. Below 25 K, Bon rapidly approaches the 

value of Bsp. This occurs because the magnitude of the full penetration field becomes 

comparable to the characteristic field of the second peak, eventually masking the 

fishtail effect at the lower temperatures. 
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III.1.3.2 Local relaxation measurements in Pb-BSCCO 

Relaxation measurements in Pb-BSCCO, as in NCCO, show (see Ref. DG17 in 

the Appendix) that the phase transition cannot be located at the peak, because its 

position is determined by dynamics. The onset position, however, is more likely to 

describe the real location of the phase transition. It is also evident from these 

measurements that after the second peak the relaxation is dominated by plastic creep, 

similar to what happens in NCCO. 

III.1.3.3 Summary of the experimental results for Pb-BSCCO 

Local m vs. H measurements in Pb-BSCCO reveal a sharp onset Bon of the 

second peak, as in YBCO and NCCO. The range of fields in which Bon is observed is 

close to that of NCCO. However, its temperature dependence is non-monotonic, 

rather, a reminder of that of Bk in YBCO (see Figure  III-10). Results of relaxation 

measurements indicate that Bon, and not Bp, is a field of the phase transition in Pb-

BSCCO. They also indicate that after the second peak, the relaxation is dominated by 

plastic creep similar to the scenario in NCCO. 

III.2 Theoretical analyses of the vortex phase transition lines 

In this section, we analyze the experimentally measured phase transition lines 

in the light of the model of disorder-induced transition. [14-16, 18, 19] We coin a 

common name, Bss, for Bon in NCCO and Pb-BSCCO and Bk in YBCO. This name 

describes a field of the solid-solid transition. We show below that the behavior of 

Bss(T) in all three systems can be explained on the basis of this model, despite the 

qualitatively different behavior of Bss(T) observed in these systems.  
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III.2.1 Derivation of Bss(T) 

In the context of the disorder-induced transition model [14-16, 18, 19] 

mentioned above, in the region in which the thermal energy may be neglected, Bon is 

determined by equating the elastic energy 

 2
0 0el LE c aεε=  (III.6) 

with the pinning energy 0 1/ 5
0( / )pin dp cE U L L= . In these expressions 2

0 0( / 4 )ε πλ= Φ , is 

the vortex line tension, cL = 0.1 - 0.3, the Lindenmann number,  

 2 4 1/ 3
0( )dpU γε ε ξ=  (III.7) 

is the single vortex depinning energy, 0 2L aε≈ the characteristic length for the 

longitudinal fluctuations induced by elastic interactions, 0 4 2 2 1/ 3
0( / )cL ε ε ξ γ=  the size of 

the coherently pinned segment of the vortex, γ the disorder parameter, and (in the 3D 

case) s<Lc<L0. The equation  

 el pinE E=  (III.8) 

then yields  

 3
0 0[ / ]ss dpB B U U=  (III.9) 

where 2 2
0 0 /LB c ξ= Φ  and 11/ 6

0 0 / 2LU c εε ξ= , and finally 

 
5 3

11/ 2 0
2 2 32

16
L

ss
cB ε
π λ ξ γ

− Φ
=  (III.10) 

Thus, the temperature dependence of Bss has its origin in the temperature dependence 

of ξ, λ, and γ. Although the temperature dependence of ξ and λ is universal, that of γ 

depends on the pinning mechanism. Pinning may be caused by spatial fluctuations of 

Tc (“δTc-pinning”) or of the charge carrier mean free path l (“δl-pinning”) near a 

lattice defect. Spatial variations of Tc lead to spatial modulation of the linear and 

quadratic terms in the Ginzburg-Landau (GL) free energy functional, whereas 
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variations of the mean free path affect the gradient of the order parameter in the GL 

functional. (For further discussion, see Ref. [8], p. 1141). Our fitting procedure 

demonstrates that the temperature dependence of Bss(T) determines, unequivocally, 

which one of these two pinning mechanisms dominates, as these two pinning 

mechanisms give rise to qualitatively different behavior of Bss(T): For δTc-pinning 

41/γ λ∝  and  

 [ ] 3/ 23 4( ) (0) ( ) / (0) (0) 1 ( / )ss ss ss cB T B T B T Tξ ξ −  = = −   (III.11) 

that is, Bss decreases monotonically with T, whereas for δl-pinning 41/( )γ λξ∝ , and                    

 ( ) 1/ 24( ) (0) ( ) / (0) (0) 1 ( / )ss ss ss cB T B T B T Tξ ξ
−

= = −  (III.12) 

that is, Bss increases with T. 

We show below the success of this theoretical model in explaining the data 

obtained in the previous sections.  

III.2.2  Nd1.85Ce0.15CuO4-d 

It can be shown that that the condition for the 3D case (s<Lc<L0) is fulfilled in 

NCCO (where 0.6s nm≈ ) in most of the temperature range, as may be verified by 

substituting ε = 1/30 [71] x = 8 nm [82, 83], λ = 100 nm (5) and 

1/ 32
6 2

0 0

10 /c
cj A cmγ

ε ξ
 

= ≈ Φ  
 (estimated from the width of the hysteresis 

magnetization loop) in the above expressions for Lc and L0, yielding Lc ≈ 3 nm and L0 

≈ 30 nm. (L0 was calculated for B = 200 G ~ Bss.) 

                                                 

5 The penetration depth λ was estimated from our magnetic measurements of the lower critical 

field and is consistent with Ref. [84]. 
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A one-parameter fit of Bss for Nd1.85Ce0.15CuO4-d to Eq. (III.11) yields 

Bss(0)=270 G. The fit is shown in Figure  III-3 (solid line). 

The agreement between the calculated and measured data is apparent. 

Returning to Eq. (III.9) when T = 0 is substituted we extract the value of 

(0) 60dp dp cT U K T≡ ≈ > , confirming that thermal depinning is insignificant in the 

NCCO experiment. 

The above analysis allows comparison of the three energy scales, Eel, Epin and 

Eth, in the NCCO system. These energies are shown in Figure  III-16 as a function of 

temperature and field. 

 

Figure  III-16. Elastic (Eel), pinning (Epin) and thermal (Eth) energies as a function of 
temperature and field (a) for NCCO and (b) for BSCCO. Eth is negligible in most of the 
temperature range in NCCO but only at low temperatures in BSCCO. In these 
temperature ranges, Bon(T) is the projection of the crossing line Eel=Epin on the B-T 
plane. In BSCCO, the melting line is the projection of the crossing line Eel=Eth on the B-
T plane. 

The figure demonstrates that both Eel and Epin are decreasing functions of temperature 

and field, but the decrease of the elastic energy is faster, causing Eel(B,T) and 

NCCO 
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Epin(B,T) surfaces to cross each other. The projection of this crossing line on the B-T 

plane is the Bon(T) line.  

Note that the thermal energy is well below Eel and Epin for most of the 

temperature range. The situation is different for BSCCO (6), as shown in Figure  

III-16b, using the parameters Tc = 90 K, 1/100ε = , Bon(0)=450 G. As apparent from 

the figure, in BSCCO Eth plays an important role, and one can identify both Bon(T) 

and the melting line Bm(T). Note that the crossing line of Eel and Epin can be viewed as 

Bon(T) only at low temperatures where the contribution of Eth can be neglected. Figure 

 III-16b indicates that in this region Bon(T) is temperature independent. 

III.2.3  YBa2Cu3O7-d 

The Bss(T) curve of YBa2Cu3O7-d, Figure  III-10, is markedly different from the 

corresponding curves obtained in Bi2Sr2CaCu2O8+d and Nd1.85Ce0.15CuO4-d  crystals 

(see Figure I-1 and Figure  III-3). While Bss(T) is approximately constant in 

Bi2Sr2CaCu2O8+d and decreases monotonically with temperature in Nd1.85Ce0.15CuO4-

d, it is a non-monotonic function of temperature in the untwinned YBa2Cu3O7-d. In the 

following, we explain these pronounced differences within the framework of the 

disorder-induced transition theory [14-16, 18, 19].  

In Bi2Sr2CaCu2O8+d, Bss persists up to only 40 K, well below Tc. In this 

temperature range (T<<Tc) all the superconductor parameters are almost temperature 

independent. As a result, the line defined by Eel = Epin is approximately temperature 

independent. In Nd1.85Ce0.15CuO4-d (Tc ≈ 23 K) and YBa2Cu3O7-d (Tc ≈ 93 K), Bss 

                                                 

6 Note that, due to higher anisotropy in BSCCO, a more accurate analysis that would take into 

account 2D and 3D pinning regimes (see analyses for Pb-BSCCO in Section  III.2.4) is needed. Figure  

III-16b serves here for purpose of qualitative comparison only. 
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persists up to at least T/Tc = 0.93 and 0.86, respectively, and, therefore, the 

temperature dependence of the superconductor parameters affects Epin(T) and Eel(T) 

and, consequently, Bss(T). As discussed below, Bss(T) depends strongly on the specific 

microscopic pinning mechanism - different mechanisms may cause either an increase 

or a decrease of Bss with temperature. As a matter of fact, the specific behavior of 

Bss(T) may serve as a probe for the microscopic pinning mechanism. Thus, both the 

decrease of Bss(T) in Nd1.85Ce0.15CuO4-d up to the close vicinity of Tc, and the weak 

increase of Bss up to 66 K in YBa2Cu3O7-d find a natural explanation as a disordered-

induced phase transition, taking into account the different origin for the pinning 

mechanism in these particular samples. Quantitative fits of the experimental data for 

the three samples show good agreement with the theoretical predictions. A detailed 

explanation of the fit procedure is outlined in the following paragraphs. 

Near the transition, for temperatures below the depinning temperature Tdp 

(defined below), the increase of Bss with temperature observed in YBa2Cu3O7-d 

indicates a δl-pinning mechanism, supporting the conclusions of Griessen et al. [85, 

86]. A one-parameter fit of Eq. (III.12) fits the Bss data for YBa2Cu3O7-d up to T = 66 

K well, as shown by the solid line in Figure  III-10, yielding Bss(0) = 11 kG. Above 66 

K, Bss(T) exhibits a dramatic increase, which may be attributed to a strong decrease of 

the pinning energy Epin, suggesting that for our YBa2Cu3O7-d sample, the depinning 

temperature Tdp = 66 K. This value of Tdp will be further justified below.  To fit the 

data above Tdp, we note that at 66 K, at the solid-solid transition field, Eel = Epin ≈ 80 

K are both comparable to kT, and, thus, one must take into account the contribution of 

the thermal energy. This may be accomplished by introducing the strong thermal 

smearing of the pinning disorder through an exponential increase of the Larkin length  
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 0 3( / ) exp( (( / ) 1))c dp c dpL T T L c T T= −  (III.13) 

for dpT T> , where c is a number of order 1 [8, 15]. Introducing this expression of Lc 

in 1/ 5
0( / )pin dp cE U L L= , and equating Epin to Eel yields the solid line in Figure  III-10 

between 66 and 75 K, using the same parameters as above, that is, Tdp = 66 K and 

Bss(0) = 11 kG. This approach is valid only in the vicinity of Tdp. Our calculations 

show that above 75 K, Lc > L0 and the pinning energy is now given by 2
0pinE Lγξ≅  

[16], that is, no longer dependent on Lc. Therefore, the fast decrease of Epin with 

temperature is moderated, and the increase of the superconducting parameters with 

temperature causes Bss to decrease.  

We note that in some samples, for example, doped and electron irradiated 

Bi2Sr2CaCu2O8+d [70, 87, 88], Bss may also increase with temperature, suggesting a 

δl-pinning mechanism in these samples. 

III.2.3.1 Quantitative test of the model: comparison between two samples 

The quantitative analysis in the model presented above, is complicated by a 

presence of unknown parameter cL. This is why Bss(0) may be determined only 

through a fit of experimental data. The way to avoid this difficulty in testing 

theoretical predictions for the influence of pinning strength on the solid-solid 

transition is to calculate ratios between measurable quantities, such as Bss(0) and Tdp, 

for two different samples with similar properties, except the slightly different disorder 

strength. 

If the disorder-induced transition is correct, then we expect that in the sample 

with higher pinning, the Bss will be lower. This should be governed by the expression  

 ( ) 3 10ss dpB T γ− −∝ ∝  (3.14) 
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This is indeed realized when comparing samples Y1 and E1 (see experimentally 

obtained values in  III.1.2.7). We obtain 1 0 5
1

ss

ss

B (Y ) .
B ( E )

� , as compared with 

1 0 64
1

k

k

B (Y ) .
B ( E )

≈ , showing a discrepancy as small as 20%, strongly supporting the 

model. We can also check the assumption we made that the temperature at which a 

strong increase in Bss takes place (see Figure  III-10) is the depinning temperature Tdp. 

Depinning temperature must grow with an increase of pinning and, therefore, to 

decrease with increase of Bss. This is governed again by Eq. (3.14). To check our 

assumption about Tdp, we extracted those temperatures from the Bss(T) curves (see 

Table  III-3).  

 Sample Y1 Sample E1 

Tdp, K 75 66 

Table  III-3. Comparison of Tdp for samples Y1 and E1. 

The relation for Tdp coming from Table  III-3 is then 
( 1)

1.14
( 1)

dp

dp

T Y
T E

≈ , as compared with 

1.25 obtained from Table  III-2. This discrepancy, as small as 7%, supports our 

assignment of Tdp to a point of strong increase in Bss. 

III.2.4  Bi1.6Pb0.4Sr2CaCu2O8+d 

In this material, to equate Epin with Eel it is important to take into account three 

possible regimes for the pinning energy. These regimes are defined by the three 

length-scales in the problem: the interlayer spacing s, the characteristic size of the 

longitudinal fluctuations in a cage L0, and the size of a coherently pinned segment of 

the vortex. For a 2-D case (Lc < s < L0) [16]  

 
1/ 5

0
pin p

LE U
s

 
 
 

�  (III.15) 
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For a 3-D case (s < Lc) [15, 16] if (Lc < L0) it becomes 

 
1/ 5

0
pin p

c

LE U
L

 
 
 

�  (III.16) 

whereas, for the case s < L0 < Lc [16]  

 0pinE Lγ�  (III.17) 

where pU sπ γ=  is one pancake pinning energy. Equation (III.8), in which Epin is 

determined by (III.15), (III.16), or (III.17) and Eel is determined by (III.6), yields the 

temperature dependence of the solid-solid phase transition line Bss(T) in each of these 

three regimes. 

 The curve Bss(T) for Pb-BSCCO is identified by the full squares in 

Figure  III-15. We now consider the Bss(T) dependence in the temperature range 25 < 

T < Tc , where it is not influenced by the interference with the “first peak” (see  

III.1.3). The line Bss(T) is composed of three regimes: (i) Bss initially decreases with T; 

(ii) Bss then slightly increases with T, exhibiting a maximum; and, finally, (iii) Bss 

decreases again up to Tc. It can be shown that these three regimes are directly related 

to the three Epin regimes outlined above. First note that L0 is temperature independent 

and, for fields of order Bss (several hundred Gauss), L0 is larger than the interlayer 

spacing s = 1.54 nm. (For example, for B=300 G, 0 7.6L nm≈ ). Substituting the value 

of the anisotropy, 1/ 68ε = , obtained in Ref. DG17 in the Appendix, and reasonable 

values for 1 10nmξ = −  and 100 200nmλ = − , it follows that Lc << 1 nm at low 

temperatures. It is, therefore, possible to conclude that, at low temperatures, we are in 

the limit of 2D-pinning. Then, substituting Eqs. (III.15) and  (III.6) into Eq. (III.8), 

one obtains, for the dTc-pinning case:  

 ( )
5/ 445/ 2( ) (0) 1 /on onB T B T Tξ −  ∝ = −   (III.18) 
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The fit of this expression to the experimental data for 25 < T < 48 K is shown in 

Figure  III-17.  
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Figure  III-17. Second peak onset field Bon versus temperature for the Pb-BSCCO crystal 
(circles) shown together with a theoretical curve Eel = Epin for different pinning regimes 
(solid lines). 

Around 48 K, Bss starts increasing with temperature. For none of the parameters in Eq. 

(III.19) can the temperature dependence change in such a way that Bss will start 

increasing. Therefore, it seems reasonable to conclude that at around 48 K, there is a 

crossover to a regime where Lc, exceeds the value of s. A mechanism, which may 

explain such an abrupt increase in Lc is the temperature smearing of the pinning when 

the transverse thermal fluctuations of the flux lines become larger than x. This occurs 

at the single vortex depinning temperature. Our experimental results suggest that for 

Pb-BSCCO, Tdp  ª 48K. Above this temperature, the Larkin pinning length starts 

growing exponentially, as given by Eq. (III.13), as a result of a thermal smearing of 

the quenched disorder. Indeed, our calculations show that in the vicinity of T ª 48 K, 

Lc ª 1 nm and becomes of order s. This growth causes a crossover to a regime where s 
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< Lc< L0 and Bon(T) is then determined by substituting Eqs. (III.16) and  (III.6) into 

Eq. (III.8). A fit of Bss(T) in the temperature range 48 < T < 66 K yields the line 

described in Figure  III-17. In this regime, Bss is predicted to increase with 

temperature. The decrease of Bss with temperature above T ª 66 K implies that at this 

temperature Lc exceeds the value of L0. Indeed, our calculations show that, in the 

vicinity of 66 K, Lc ª L0 ª 5 nm, implying the validity of Eq. (III.17) for Epin. A fit of 

the Bss data for T > 66 K, based on Eq. (III.17), is also shown in Figure  III-17. 

III.3  Summary and conclusions 

In this chapter we identified a vortex solid-solid transition in NCCO, Pb-

BSCCO, and untwinned YBCO crystals. 

We find that the temperature dependence of the transition field Bss in these 

crystals differs markedly. Nevertheless, we were able to explain the different 

behaviors when using the same model, the model of disorder-induced transition, based 

on the competition between Epin and Eel. We applied this model in different vortex 

regimes and introduced different pinning mechanisms. We showed that, at 

temperatures lower than Tdp, the temperature dependence of Bss originates from the 

temperature dependence of correlation length ξ. 

In contrast to NCCO, for the Bss(T) lines of Pb-BSCCO and YBCO, thermal 

fluctuations must be explained for temperatures larger than the single vortex 

depinning temperature. At T > Tdp, the Larkin length starts to grow exponentially, thus 

accelerating the decrease of pinning energy. This is reflected in Bss(T) line as a sudden 

increase at T = Tdp. 

We find also that, from the behavior of the solid-solid transition line at low 

temperatures (T < Tdp) one may infer the microscopic origin of the pinning: the 
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decreasing Bss(T) line implies dTc-pinning mechanism, and increasing Bss(T) implies 

dl-pinning. We find, using this method, that NCCO and Pb-BSCCO have dTc-pinning 

and YBCO has dl-pinning. 

In addition, to describe a temperature dependence of Bss in Pb-BSCCO, 

transitions among three different pinning regimes must be considered: (Lc < s < L0), (s 

< Lc < L0) and (s < L0 < Lc). These regimes are crossed in Pb-BSCCO, due to its 

relatively high anisotropy and critical temperature. 

We also test the applicability of the disorder-induced transition in YBCO by 

testing its predictions with regard to the values of the Bss(0) and Tdp. Although these 

values cannot be obtained directly, because the Lindenmann criterion cL is unknown, 

it is possible to test the theoretical prediction for the ratio of Bss and Tdp for two 

crystals with different pinning. We find an experimental value of 1.25, as compared 

with a theoretically predicted value of 1.14 for Tdp, and for Bss, we find an 

experimental value of 0.64, as compared with a predicted value of 0.5. This indicates 

a very good agreement between theory and experiment. 

The materials chosen for this study (NCCO, Pb-doped BSCCO, and YBCO) 

have different values of superconducting critical temperature Tc, anisotropy ε, and 

other superconducting parameters. Nevertheless, we associated the vortex solid-solid 

transition in these materials with the disorder-induced transition. It is, therefore, 

expected that the same phenomenon observed in other HTS and LTS crystals is also 

associated with the disorder-induced transition. This work provides tools for 

analyzing the behavior of the solid-solid transition in other materials. An additional 

important result of the proposed analysis is the ability to extract other valuable 

information, such as the microscopic pinning mechanism, from the behavior of the 

solid-solid transition line. 
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IV Nucleation and growth of the vortex solid phases 

In the previous chapter, we described the thermodynamic solid vortex phases 

and the transition between them. In this chapter, we focus on the process of formation 

of the thermodynamic phases, that is, on the transient vortex states preceding the 

establishment of the equilibrium: thermodynamic states. For the purpose of tracing 

this transient state, we developed a high-temporal resolution magneto-optical system 

that enables the imaging of the time evolution of the induction distribution in the tens-

of-milliseconds time scale. Our measurements revealed the dynamic coexistence of a 

quasi-ordered vortex phase and a transient-disordered vortex phase. The growth 

process of the solid phases could be traced for the time. In the following, we present 

the experimental results and propose qualitative interpretation.  A quantitative 

analysis, based on the time-dependent Landau-Khalatnikov equation, is presented in 

the next chapter. 

IV.1 Experimental 

The study was performed on two BSCCO single crystals, referred to as S1 

(0.66 x 0.24 x 0.03 mm3, Tc ≈ 80 K) and S2 (1.5 x 0.68 x 0.03 mm3, Tc ≈ 88 K), 

which were grown by T. Tamegai, using the traveling solvent floating zone method 

[89]. In the temperature range of the experiments described below, Bss is estimated, 

from static magnetization loops, to be at approximately 400 G for both samples. The 

normal component of the magnetic induction, B, was detected on the sample's surface, 

employing magneto-optically active ferrimagnetic iron-garnet films with in-plane 

magnetization (see Chapter II). Polarized light passing through the indicator changes 
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its angle of polarization as a function of the local magnetic induction. Measurements 

were performed immediately after a sudden change in the external magnetic field Ha 

(change-time ≈ 50 ms) applied parallel to the c-axis and perpendicular to the sample's 

surface. More than 100 two-dimensional images were then captured by a CCD video 

camera at minimal time intervals of 40 ms. From these images, one-dimensional 

profiles (induction vs. position) across the sample width were extracted. These 

profiles are usually obtained by averaging several neighboring profiles. 

Two basic types of experiments were performed:  

1. Field-Step-Up (FSU) experiment 

In this kind of experiment (up-pointing arrows in Figure  IV-1), the sample is 

suddenly exposed (field rise-time ~ 50 ms) to a magnetic field Ha, and the time 

evolution of the flux distribution is monitored.  

 

Figure  IV-1. Schematic description of FSU and FSD experiments. 

2. Field-Step-Down (FSD) experiment 

In this kind of experiment (down-pointing arrow in Figure  IV-1), the magnetic 

field is first raised to well above Bss, and, then, after long enough waiting time (to 
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allow for establishment of the high-field phase), the field is decreased sharply to a 

value Ha < Bss, at which value the flux distribution is monitored. 

IV.2 Field-step-up experiments 

IV.2.1 Imaging of magnetic relaxation from first flux entry to equilibrium       

(Ba << Bss) 

 Figure  IV-2 shows the time evolution of the magnetic induction profiles at T 

= 20 K, after a step increase (rise time ª 50 ms) of the external magnetic field from 

zero to 400 G. The time elapse between subsequent profiles is 100 ms.  
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Figure  IV-2. Magnetic induction profile evolution after sudden application of magnetic 
field in the field range of the ordered phase. Sample center is at x = 0. 

As indicated by the profiles, the induction near the sample edge (Ba ≈ 300 G), 

is well below Bss. Initially, Bean-type profiles are observed, gradually evolving into 

equilibrium dome-shaped profiles. The sharp induction step at the edges is due to 

surface currents js [90]. Assuming, in addition to js, a uniform bulk current density jb 
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(see schematic currents distribution on Figure  IV-3), the profiles of Figure  IV-2 may 

be fitted to the Biot-Savart law.  

 

Figure  IV-3. Schematic electrical current density distribution under assumption of 
uniform bulk current. 
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Figure  IV-4. Time evolution of the magnetic induction profiles for field Ha = 380 Oe (Ba 
= 320 G), for sample S2 (Bss  400 G). Profiles shown are measured at t = 1.4, 2.2, 3.7, 5.4, 
and 9.8 s. Solid lines are theoretical fits with bulk current density jb and surface current 
density js as parameters. Inset: Log-log plot of jb vs time. 
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Such a fit is shown in Figure  IV-4. In the long time limit, a dome-shaped profile, 

characteristic of surface and geometrical barriers in thin samples [73], is observed. 

Inasmuch as B < Bss throughout the sample, the dome-shaped profile implies the 

establishment of an ordered stable state with vanishing bulk current density jb. The 

time dependence of jb (as deduced from fits of the profiles employing the Biot-Savart 

law) is shown in the log-log plot in the inset. It exhibits unconventional non-

logarithmic creep behavior. 

IV.2.2 Dynamic coexistence of two phases (Ba  ~ Bss) 

The data of Figure  IV-4 show no evidence for the coexistence of different 

vortex phases in different parts of the sample. An evidence for such a situation is 

observed when Ba is closer to Bss. Figure  IV-5 shows the time evolution of the 

magnetic induction profiles in sample S2 at T = 20 K, after a step increase of the 

external magnetic field from zero to 470 Oe.  
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Figure  IV-5. Time evolution of the magnetic induction profiles for field Ha = 470 Oe (Ba 
= 450 G) for sample S2 (Bss  400 G). Profiles shown are measured at indicated times. 
Solid lines are theoretical fits, with js, jl, jh, and xf as fitting parameters. Arrows point to 
the location xf of the breaks in the profiles, deduced from the fits. 
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A striking feature in Figure  IV-5 is the development of a sharp change in the 

slope (break) of the induction profiles at x = xf, (marked by arrows) and at 

corresponding induction B = Bf. Figure  IV-5 exhibits the following properties of this 

break:  

1) The induction Bf corresponding to the break is much below Bss  400 G.  

2) The induction Bf grows with time.  

3) The point xf moves progressively with time toward the sample edges at 

|x|=w/2.  

Let us now try to explain the origin of this break. In the following, we show 

that remarkable changes in the bulk current density and in the magnetic relaxation 

characteristics occur at the point xf. We first note that, in contrast to the profiles 

shown in Figure  IV-4, the profiles of Figure  IV-5 cannot be reasonably fitted to the 

Biot-Savart law using a uniform bulk current density. However, assuming two 

different values, jh and jl, for the bulk current density on both sides of xf (see 

schematic current distribution on Figure  IV-6), one obtains excellent fit, as shown by 

the solid lines in Figure  IV-4. Using the Biot-Savart law, the normal component of the 

induction is expressed as a function of a surface current density js, and bulk current 

density j(x), which is equal to jl for |x| < xf, jh for xf < |x| < w/2 and zero for |x| > w/2. 

Fitting this expression to induction profiles measured at different times yields the time 

dependence of js, jl, jh, and xf. 
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Figure  IV-6. Schematic electrical current density distribution in the presence of break at 
xf. 

The log-log plot in Figure  IV-7 shows that the bulk current density jh, 

corresponding to the part of the profile near the edges, exhibits a power-law decay 

with time (fit yields jh ∝ t-0.31), whereas jl(t) exhibits deviations from a power-law; 

similar deviations were observed in jb (see inset to Figure  IV-4).  
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Figure  IV-7. Log-log plot of jh(t) and jl(t).  
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The power-law decay observed for jh(t) implies logarithmic divergence of the 

activation energy for flux creep, as the current density approaches zero [8, 67]. This 

behavior is characteristic of the disordered (glassy) vortex state with plastic creep [91-

93].  

The existence of two different bulk currents on both sides of xf, the different 

time-dependence of the currents, and the movement of xf with time imply dynamic 

coexistence of low- and high-j phases on both sides of xf. 

In an effort to understand the nature of these phases, we extracted the E-j 

characteristics for both phases (Figure  IV-8), by spatially integrating /zB t∂ ∂  in Eq. 

(III.1). The best fits to a power-law nE j∝  yield n = 1.9 and n = 3 for jl and jh, 

respectively. 
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Figure  IV-8. Local current-voltage characteristics for disordered phase – E(jh) taken at            
x = –290 mm (see Figure  IV-5) and ordered phase – E(jl) taken at x= –130 mm. Dashed 
lines represent linear fits. 

To extract values for critical current density, we note that in our experimental 

time-window both curves behave rather linearly, enabling extrapolation toward E = 0, 
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as shown by dashed lines in Figure  IV-8, which yield 262 /h
cj kA cm�  and 

231 /l
cj kA cm�  for T = 20 K. Thus, the value of critical current density in the high-j 

phase is approximately twice the value for the low-j phase. 

We turn now to a discussion of the origin of the intersection point between the 

E(jl) and E(jh) curve at the jtr point. For currents higher than jtr (short times – the break 

still has not appeared), there is only a single curve describing the E(j) characteristics 

of both phases; in other words, there is only a single transient phase from which the 

low-j and high-j phase evolve.  

Below are attempts to reach conclusions concerning the nature of this transient 

phase from the form of the E(j) curves. As demonstrated in Figure  IV-8, at current 

densities lower than jtr, the E(jl) curve breaks and starts to have smaller slope, and the 

E(jh) curve is a direct continuation of the transient E(j) curve7. This implies that the 

high-j phase and the transient phase have similar natures, and the low-j phase has a 

principally different nature. One can, therefore, claim that, after the sudden 

application of a magnetic field, a transient high-j vortex phase is created. The 

appearance of a break at xf signifies the nucleation of another low-j phase in the inner 

part of the sample, and the motion of xf signifies the low-j phase enhancement. 

IV.2.3 Two-dimensional images 

On the one-dimensional profiles (Figure  IV-5), the point xf is moving toward 

the sample edge; therefore, on a 2-D image, xf must be a point on the border between 

the expanding low-j phase and the retreating high-j phase. To construct the borderline 

between the two phases, we utilize their different relaxation characteristics. We 

                                                 

7 As a result, for the same current, the electric field E is higher in low-j phase than in the high-

j phase, resulting in a developing break in the induction profile. 
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subtract consecutive 2D induction images and plot the difference. In the low-j state, 

the decay is relatively fast and the differnces are relatively large (bright in our gray 

scale). The slow decay of the high-j state results in a relatively small difference (dark 

color). Figure  IV-9 illustrates a result of such a procedure, showing a clear border 

between the two phases. This border can be viewed as the front of the growing low-j 

phase. As shown below, in Section  IV.4, the growth rate of the ordered phase depends 

on the local induction. The equi-induction lines are curved in a thin rectangular 

sample [94]. As a result, the shape of the front of the growing phase, shown in Figure  

IV-9, is curved.  

 

Figure  IV-9. Illustration of the border between the two vortex phases, constructed by 
taking the difference of two consecutive images. 

IV.2.4  Non-monotonic motion of the front (Ba    Bss) 

The following describes an experiment done at higher temperature (T = 23 K) 

on sample S1. Here, due to faster dynamics, we were able to observe another mode of 

break motion characteristic to applied fields higher than Bss. 
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Figure  IV-10. Time evolution of the magnetic induction profiles for field Ha = 510 Oe (Ba 
= 430 G > Bss ≈ 400 G), for sample S1. Profiles shown are measured at t = 0.14, 0.3, 0.66, 
1.3, and 5.94 s. Bold circles denote the location xf of the breaks in the profiles. Solid lines 
are theoretical fits. Lower inset: Log-log plot of jh(t) and jl(t). Solid line: Fit of power law 
for jh(t), with an exponent -0.34. 

In Figure  IV-10, we show the time evolution of the magnetic induction 

profiles after a step increase of Ha from zero to 510 Oe, corresponding to Ba > Bss. 

Sharp changes in the slope of the profiles (at break points marked by bold circles) are 

evident. Similar to the previous case, the relaxation on both sides of the break point is 

governed by different laws, as illustrated in the log-log plot in the inset to Figure  

IV-10. In Figure  IV-10, the intriguing observation is that the motion of the break point 

is non-monotonic. Initially, it moves toward the edges; however, at some point it 

changes direction and starts moving backwards, toward the sample center. During this 

non-monotonic motion, the induction Bf at xf increases continuously. In Figure  IV-11 

we summarize the different modes of motion of xf for sample S1 as plots of Bf vs xf for 

different values of Ba/Bss. Similar results are also observed in sample S2. 
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Figure  IV-11. The time evolution of Bf vs. xf for sample S1 at the indicated values of 
Ba/Bss. xf is measured from the center. 

As already mentioned, the break in the induction profile at xf (which marks 

changes in the bulk current density and in the relaxation characteristics) indicates a 

dynamic coexistence of two distinct vortex phases on both sides of xf. The 

identification of these states and the explanation for the different modes of motion of 

xf become apparent in considering the following model. 

IV.3 Interpretation 

The premise of the proposed model is that the sudden injection of vortices into 

the sample, through its non-homogeneous edges, creates a transient-disordered state 

of the vortex matter. A similar metastable disordered vortex phase, injected by 

transport current, was assumed by Paltiel et al. [95] to explain a number of puzzling 

observations in NbSe2. This metastable disordered state has been ascribed to surface 

imperfections and/or surface barriers, which impede the “smooth” entrance of the 

injected fluxons [95].  
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On the basis of this premise, all of the observations described above have a 

simple interpretation. Subsequent to the flux injection and the creation of the 

transient-disordered state, an ordered vortex state starts to nucleate near the sample 

center, where the field is minimum. The growth of this state, as dictated by the 

thermodynamic conditions, leads to the coexistence of two states with different 

characteristics: an ordered state in the sample interior and a disordered state near the 

edges. The observed break in the profile at xf marks the border between these two 

phases. Consistent with this picture, we observe larger persistent currents and slower 

relaxation near the edges, indicating a disordered state. 

The monotonic motion of xf toward the edges (Figure  IV-5 and the left-hand 

curve in Figure  IV-11) is now well understood. In this case, Bf is smaller than Bss, and 

the front of the ordered state at xf progressively moves toward the sample edges, 

creating an ordered state throughout the entire sample, as dictated by the 

thermodynamic conditions. When the front reaches the sample edge, the break 

disappears, indicating that the entire sample is in an ordered state. The non-monotonic 

behavior of xf for Ba > Bss (Figure  IV-10 and the three right-hand curves in Figure  

IV-11) can be explained in a similar way. Initially, Bf is smaller than Bss, and, 

therefore, the ordered state expands toward the edges. However, as Bf approaches Bss, 

this expansion comes to a halt, as dictated by thermodynamics. Evidently, in the 

region (|x| < xf) occupied by the ordered phase, the induction increases continuously, 

due to magnetic relaxation. As a result, the ordered phase starts to retreat, and the 

disordered phase gradually penetrates into the sample. This is manifested by the 

movement of the break point xf toward the sample center. When the break reaches the 

sample center, it disappears, indicating that the entire sample is in a disordered state. 

It is important to note that the data of Figure  IV-10 and Figure  IV-11 indicate that an 
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ordered state may persist temporarily above Bss, as it takes time for the disordered 

state to take over. During this time, as the flux creep process continues, the number of 

vortices in the system increases and, inevitably, the induction Bf at the border between 

the two phases increases. 

IV.4 Growth rate 

Inasmuch as it is now clear that the observed phenomena are related to phase 

dynamics, we show here the results obtained for a key parameter of the front motion – 

the growth rate vf = (dxf/dt). 
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Figure  IV-12. vf vs. Bf for indicated applied fields Ba describing the growth of the 
ordered state. The solid line is an analytical curve obtained in Chapter V. 

In Figure  IV-12, we show the velocity vf as a function of the induction Bf at the 

front, accumulated from different experiments in sample S2, corresponding to the 

indicated ratios Ba/Bss. Figure  IV-12 shows that the velocity decreases monotonically 

to zero as Bf increases. Moreover, Figure  IV-12 demonstrates that the various vf(Bf) 

curves converge as Bf increases, indicating that the growth rate of the ordered phase is 

limited by the induction increase. As Bf approaches Bss, we expect the velocity to 



 68 

vanish (Bf ≈ 400 G in Figure  IV-12). On the basis of this interpretation, it is possible 

to understand the absence of traces of the transient-disordered state in the data of 

Figure  IV-2. Inasmuch as Ba in this figure is well below Bss, the lifetime of the 

transient state is shorter than our time resolution. To observe the transient state, the 

field must be raised to values closer to Bss. 

The growth rate of the thermodynamic disordered state can be characterized 

by the velocity of the front xf after the ''turning point'' in Bf vs xf curves, where the 

movement of xf changes direction (i.e., xf starts moving toward the sample center; see 

the three right curves in Figure  IV-11). Unlike the situation for Bf < Bss, where the 

increase of Bf toward Bss is the main factor limiting the growth of the ordered state, for 

Bf > Bss, the induction increase is in favor of the growth of the disordered state.  
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Figure  IV-13. vf vs. Bf for the indicated ratios Ba/Bss. Arrow indicates direction of time. 

This is the case immediately after vf changes its sign (Bf crosses Bss); see Figure  

IV-13. However, a bit later the growth rate of the disordered state starts to decrease, 
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with time halting the vf vs. Bf curves convergence. Instead, plots of vf vs. 
fx=x(dB/dt)| do 

converge as shown in Figure  IV-14. 

 

0 40 80

-15

-10

-5

0

 

 dB/dt [G/s]

1.41

1.26

1.13

  v
f [µ

m
/s

]

 

Figure  IV-14. vf vs. dB/dt|x=xf for the indicated ratios Ba/Bss. Arrow indicates direction of 
time. 

The possible explanation for this phenomenon is the following. When local B in the 

ordered phase crosses some characteristic induction B** (8), the order-disorder 

transformation starts to take place in the bulk. In this case, the break is no longer 

signifying the border between two phases but, rather, the “memory” of this border, 

and its dynamic is governed by the flux creep. 

IV.5 Field-Step-down experiments 

In a typical experiment of this type, shown in Figure  IV-15, we apply a field of 

660 G (significantly larger than Bss) to sample S2 and wait for a long enough time 

                                                 

8 B** is the upper limit of metastability and, in general, is larger than Bss. For a formal 

definition of B**, see section V.3. 
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interval until a thermodynamic disordered state is established in the whole sample. 

This is manifested by the absence of breaks in the profiles. When this stage is reached, 

the field is reduced abruptly to 340 Oe (below Bss). As shown in Figure  IV-15 by bold 

circles, in this experiment (as in the FSU experiment), the measured induction profiles 

exhibit a break point xf. However, in this case, the break point proceeds from the 

sample edge toward the sample center.   
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Figure  IV-15. Time evolution of the magnetic induction profiles at T = 20 K, after a step 
decrease of the external magnetic field, from 660 to 340 Oe at t = 0.1, 0.26, 0.46, 0.7, 1.06, 
1.54, and 2.3 s. Bold circles indicate the breaks in the profiles. 

The results of the FSD experiments can be interpreted in a way similar to  the 

results of the FSU experiments.  When the field is reduced, the induction profile is 

partially inverted, causing part of the profile, near the edges, to drop below Bss. The 

induction is minimum at the edges; thus, the ordered phase nucleates at the edges and 

propagates toward the sample center. At the same time, due to magnetic relaxation, 

the central part of the profile decreases below Bss, allowing the growth of the ordered 

state throughout the entire sample. Figure  IV-16 shows the time dependence of the 

location of the break xf for two different external field values, 340 and 240 Oe. 
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Figure  IV-16. Time dependence of the break point xf for Ha = 340 and 240 Oe. 

In the time window of our experiment, we are able to follow the break motion 

from its appearance (nucleation of the ordered phase) until its end (entire phase is in 

the ordered phase). The important observation here is that when the external field is 

lower, this process takes less time, in agreement with the conclusions of section  IV.4: 

growth rate increases with the decrease of induction. 

Important information can be extracted also from Figure  IV-17, where time 

dependence of local induction on the front for FSD experiments is shown, compared 

with the time dependence of Bf , obtained in FSU experiments. 
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Figure  IV-17. Dependence of Bf on time (linear-log scale) for different field steps in FSU 
(open symbols) and FSD experiments. 

The two experiments described above exhibit the growth of the ordered state 

under different relaxation processes. Nevertheless, in both experiments, Bf increases 

with time. However, this growth is qualitatively different. Apparently, in FSU 

experiments, Bf gradually approaches the value of the edge induction, which is 

determined by external field. In FSD experiments, however, Bf approaches the 

induction at the center, the value of which decreases continuously with time, due to 

magnetic relaxation. Thus, the final value of Bf depends on the time of arrival of xf to 

the center. In other words, faster relaxation of the induction at the center implies 

lower saturation values for Bf. That is what we observed for two FSD experiments, the 

Bf(t) data of which is presented in Figure  IV-18. For Ha = 240 Oe (bold triangles), 

there is a short period of sharp growth of Bf, after which Bf is stabilized around the 

value of 360 G, which is determined by a competition between break motion and fast 

flux relaxation. Less then 2 s after quench, the ordered phase invades the entire 

sample space. In the second experiment, where the external field was reduced to a 
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higher value of 340 Oe (bold circles), Bf is stabilized, after a short period of sharp 

growth, near the approximately constant value of about 420 Oe, near Bss.  

We also compare, in Figure  IV-18, the growth rate vf = (dxf/dt), that is, the 

velocity of the front of the ordered state at xf for FSU (open symbols) and FSD 

experiments. Two features are apparent in Figure  IV-18. The first is quite expected: 

The growth velocity decreases with time in all cases. The second observation is the 

large difference in the growth rate measured in short times in FSU and FSD 

experiments.  
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Figure  IV-18. Dependence of vf on time as measured in different FSU (open symbols) 
and FSD experiments. 

In interpreting the latter observation, we note that the initial values of vf must 

have received a contribution from the different relaxation conditions in FSU and FSD 

experiments. In FSU experiments, vortices enter into the sample continuously, 

causing the induction throughout the entire sample to increase. Thus, Bf can increase, 

even if vf = 0. In contrast, in the FSD experiments, vortices exit continuously, causing 

the induction throughout the entire sample to decrease. Thus, Bf cannot increase 



 74 

unless xf is moving rapidly toward the center. Deeper understanding of the mechanism 

of influence of vortex relaxation on the growth rate requires further investigation. 

IV.6 Summary and conclusions 

Our high temporal resolution magneto-optical system reveals that both the 

ordered and the disordered thermodynamic vortex states are preceded by the 

transient-disordered vortex state injected into a superconducting sample as a result of 

an abrupt exposure of the sample to a magnetic field. In the presence of a gradient of 

the magnetic field (which is usually time-dependent), after sudden application of the 

magnetic field Ba  Bss (FSU experiments), this state is followed by a local nucleation 

of the ordered phase near the sample center (or entering flux front), where the 

induction is minimal (its value may be much lower than Bss). This causes a dynamic 

coexistence of two vortex phases, possessing different relaxation characteristics E(j), 

and the appearance of a sharp break in the profile of the magnetic induction. Also, we 

find that the critical current and the exponent n in nE j∝  in the ordered phase are 

much lower than in the disordered phase, resulting in a lower momentary persistent 

current and faster relaxation in an ordered phase.  

The border between the two phases (i.e., the front of the ordered phase) starts 

moving with a velocity that depends on the local induction, Bf, at the front, and 

vanishes at Bss. If the applied field Ba is lower than Bss, the ordered phase grows until 

the whole sample is invaded, and an equilibrium-ordered state is established in the 

thermodynamic limit. A markedly different behavior is observed for Ba  Bss. In this 

case, the initial expansion of the ordered state ceases, and the growth of the 

thermodynamic disordered state, assisted by the flux entrance, takes over. This is 

marked by a sharp change in the direction of motion of the boundary between these 
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two phases. The field at the boundary (when this change of direction occurs) is 

identified as the thermodynamic transition field Bss.  

We find that the velocity of growth of the disordered state first increases as Bf 

increases (and correspondingly |Bf – Bss| increases) in agreement with the behavior of 

the velocity of growth of the ordered phase. However, at the later stage, the velocity 

of the break in the induction starts to decrease (as the creep rate decreases), which is 

probably the sign of front corruption. 

In the experiments where the field is abruptly decreased (FSD) from above to 

below Bss, the ordered phase nucleates near the sample edge, where the field is 

minimal, and grows toward the sample center, consistent with the interpretation 

presented above. 

In summary, we described experiments that allow, for the first time, direct 

observation of nucleation and growth of the vortex solid phases in BSCCO and 

provided interpretation and insight into the parameters that govern this process. 
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V Theoretical analysis of nucleation and growth of 

vortex solid phases 

In this chapter, we propose a theoretical approach to explain the nucleation 

and growth of the quasi-ordered vortex solid phase described in the previous Chapter. 

Our analysis is based on the Landau-Khalatnikov (LK) time-dependent equation [96]:  

 F
t

δ
δ

∂Ψ
= −Γ

∂ Ψ
 (V.1) 

where Ψ and F are the order parameter and the free energy of the system, and Γ is the 

Landau-Khalatnikov damping coefficient. In the following, we define the order 

parameter and the free energy for the vortex system and solve Eq. (V.1) for Ba  Bss.  

Dynamic coexistence of a stable ordered phase and unstable disordered phase, with a 

sharp interface between them, is demonstrated. The transformation to the equilibrium 

state proceeds from the sample center to its edge, by movement of this interface. Our 

theoretical analysis dictates specific conditions for the creation of a propagating 

interface and provides the time and spatial scales for this process.  

V.1 Order parameter 

We define the order parameter of the vortex system in a manner analogous to 

the definition of the order parameter in order-disorder transitions in atomic solids. 

[97] In the latter case, the order parameter ρq is a set of Fourier components of the 

atomic density, taken at reciprocal lattice vectors q = G. In particular, for an ordered 

lattice phase, ρq  = const ≠ 0 at q = G, and for a disordered state ρq = 0 for all q ≠ 0. It 

should be noted that, although the order parameter is an infinite series, in reality it can 

be replaced by few components (at small G), because the Fourier-image of the 

effective atomic potential is a strongly decreasing function of q at high G values. 
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Extending this approach to the vortex order-disorder phase transition, we first note 

that in small-angle neutron-scattering experiments in BSCCO, [10] Bragg peaks are 

observed at low temperatures and low fields mainly in the first Brillouin zone; these 

peaks are smeared for fields larger than Bss. Thus, only one component, 
1Gρ , is 

sufficient to completely describe the order parameter (
1Gρ is now a value of the 

Fourier component of the vortex density at the minimal vector of the reciprocal 

lattice). To describe the kinetics of the phase transition, we allow the order parameter 

to be temporally and spatially dependent, Ψ(r,t) = 
1Gρ (r,t), assuming that Ψ(r) varies 

slowly over the inter-vortex distance. The scalar real order parameter Ψ(r,t), so 

defined, distinguishes between two thermodynamic solid phases of the vortex matter: 

Ψ = 0 for the disordered state and Ψ =Ψ0 ≠ 0 for the ordered state. 

V.2 Free energy density functional 

In the Ginzburg-Landau formalism, the phase transition between the ordered 

and disordered phases may be described by a free energy density functional F:  

 ( )2 2 3 41 1 1 1
2 2 3 4

F D α β γ= ∇Ψ − Ψ − Ψ + Ψ  (V.2) 

where α, β, γ and D are the Landau coefficients. These coefficients depend on the 

vortex-vortex and vortex-pinning interactions, and their evaluation requires a 

microscopic theory that does not yet exist. Note that Eq. (V.2) does not describe the 

whole free energy of the vortex system, but only the part that is varying through the 

phase transition, that is, Ψ-dependent. 

Inasmuch as the order-disorder vortex phase transition in BSCCO is field 

driven, we express the parameter α as a function of B:  

 *
0 (1 / )B Bα α= −  (V.3) 
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where B* is a characteristic field related to the transition field * 21
9ssB B

µ
 

= + 
 

 where 

0
2

α γµ
β

= . Note that for a second order transition (β = 0), Bss = B*. For a first order 

phase transition, metastable states of the system are found between B* and 

** * 11
4

B B
µ

 
= + 

 
. For B < B*, the disordered state is unstable, but the ordered state, 

characterized by  

 0 *1 1 4 1
2

B
B

β µ
γ

  Ψ = Ψ = + + −  
   

 (V.4) 

is stable. For B > B** the ordered state is unstable, and the disordered state with Ψ = 0 

is thermodynamically favorable. All the above results are deduced from the 

conventional Landau theory for phase transitions [98] by replacing temperature with 

the induction B. Schematic F(Ψ) dependence for different B is demonstrated in Figure 

 V-1. 

  

Figure  V-1. F(Ψ) dependence for different values of uniform magnetic induction. 
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V.3  Initial conditions 

In solving Eq. (V.1), we assume an initial non-equilibrium disordered vortex 

state (Ψ = 0) caused by the rapid injection of the vortices through non-uniform surface 

barriers (see Section  IV.3). We show that Eq. (V.1) can describe the nucleation and 

growth of the vortex ordered phase (Ψ = Ψ0).  

V.4  Constant gradient 

We solve Eq. (V.1) for assuming induction distribution with a constant 

gradient B
d

�
, that is, 1a

xB B B
d

 
= − − 

 
� , typical for hard type-II superconductors, [48, 

67], where d is half-width of the sample (see Figure  V-2). In this case, Eq. (V.1) can 

be solved analytically for both the nucleation and growth processes9.  

 

Figure  V-2. Schematic drawing of the magnetic induction distribution used in the model.  

                                                 

9 Without a field gradient, nucleation will occur at random locations and the growth will 

proceed without the creation of a front, see Refs. [99-101] 
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V.5 Nucleation process 

A solution for the nucleation process, that is, the initial growth of the order 

parameter (Ψ close to zero), is obtained by neglecting nonlinear terms in Eq. (V.1). 

 
2

02 * *

1 1 aB B BD x
t x B B d

α
 −∂Ψ ∂ Ψ

= + − − Ψ Γ ∂ ∂  

� �
 (V.5) 

The boundary condition dictated by symmetry is ( )
0

,
0

x

d x t
dx

=

Ψ
= ; we also require 

( ),x tΨ  to be a non-diverging function. The solution of Eq. (V.5) is then:  

 
0

| |
nt

n n
n s

xA e Ai
x

ζ
∞

Λ

=

 
Ψ = − 

 
∑  (V.6) 

where  

  

 

21
33

0 * *1 a D
n n

B B a B
B B

α ζ
µ

 
  − Λ = Γ − −         

� �
, (V.7) 

Ai is the Airy function, ζn = 0.685, 3.9, 7.06, ... are the solutions of 

( ) ( )2/ 3 2 / 3n nJ Jζ ζ−= , where Jν is the Bessel function, and  

 

1 1
* *3 3

0

D
s

DdB a Bx d
B Bα µ

   
= =   

  � �  (V.8) 

Here, 2 2D
Da

d
γ

β
=  is a dimensionless exchange coefficient. Note that ζ is a constant of 

order n, growing with increasing n. 

It is evident from Eq. (V.6) that only terms with 0nΛ >  play a role in the 

nucleation process. For *
aB B B− >� , that is, the entire sample is in a metastable or a 

stable (but not unstable) state, all nΛ  are negative, implying that the nucleation 
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process cannot take place. For aB B= � , the induction at the center of the sample is 

zero, and the rate of the nucleation process is maximum. Relation (V.7) shows that the 

exponent with n = 0 yields the fastest nucleation rate, thus governing the nucleation 

process. Therefore, this process may be described approximately by the first term in 

Eq. (V.5). In this approximation, dashed lines in Figure  V-3 describe the development 

of the order parameter during the nucleation process.  
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Figure  V-3. Nucleation and growth of the order parameter. The nucleation process is 
demonstrated by the dashed curves, calculated from Eq. (V.6), for An=A0δn,0 at times 
Λnt=8.12, 9.86, and 11.02. The solid lines, describing the growth process, are calculated 
from Eq. (V.11) at different locations xf/d=0.3, 0.5, 0.7, and 0.9. 

Note that the analytical solution (V.5) describes only the first stages of the nucleation 

process, in which the non-linear terms in Eq. (V.1) may be neglected. This solution 

ceases to apply when the value of Ψ approaches Ψ0, that is, after a time period of 

order 1
0
−Λ . The width of the ordered domain is then given, approximately, by 

( )~ 1 ~s n sw x xζ+ . The condition for appearance of localized domain in the sample 

center may be then obtained from the inequality xs << d or:  
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 * 2
3

0

      
2
9

D

ss

B a j D
B B

d
µ βα

γ

>> ⇒ >>
 

+ 
 

�
 (V.9) 

where Bj
d

=
�

 is a gradient of magnetic induction. If this condition is not satisfied, 

then homogeneous transformation of the unstable phase takes place. Otherwise, a 

sharp front will develop, separating between the nucleating ordered phase and the 

initial unstable disordered phase, as described above. Thus, when the induction 

gradient is large enough, compared with the Bss value, we expect the appearance of a 

sharp interface between the growing stable (ordered) phase and the retreating unstable 

(disordered) phase. There is another important conclusion from Eq. (V.9): If the 

sample size is reduced, then the growth of the ordered phase is expected to have a 

crossover from the front-like to homogeneous mechanism. 

V.6  Growth process 

In describing the growth process, that is, the movement of the interface 

between the ordered and disordered phases, non-linear terms in Eq. (V.1) must be 

taken into account. We express the linearly varying function B(x) as: 

f f
BB B x x
d

 
 = + −   

 

�
, where ( ) /f a fB B B x B d= − +� �  is the induction at the front 

located at xf. Equation (V.3) then yields 
( )
*

0

1
f f

BB x x
d
B

α
α

+ −
= −

�

, and therefore Eq. 

(V.1) can be written in the reference frame of an observer moving with the front, by 

introducing a new variable ( )fx x tξ = −  and defining ( )0
0

( ) ' 'f fx t x v t dt
∞

= + ∫ , where 
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vf is the time-dependent front velocity and x0 is a constant. With the new set of 

independent variables ( , )fBξ , Eq. (V.1) becomes:  

( ){ }2
2 3

02 * *1 f ff

f

B x tv B BD
d B B B d

α ξ β γ
ξ ξ

  ∂Ψ ∂Ψ ∂ Ψ  − + = + − − Ψ + Ψ − Ψ    Γ ∂ ∂ ∂   

� �

(V.10) 

One can solve this equation analytically, provided the front width *
fdB

B
∆ << . 

In this case, the terms f

f

v B
d B

∂Ψ
Γ ∂

�
 and 0 *

B
dB

ξα
 

− Ψ 
 

�
 may be neglected10. The solution 

of Eq. (V.10) is then [103]:  

 0

1 exp fx x
Ψ

Ψ =
− 

+  ∆ 

 (V.11) 

where the front width is defined by: 

 
( ) ( )

2
2 0

* *2 1 / 1 1 4 1 /f fB B B Bµ µ

∆
∆ =

− + + + −
 (V.12) 

The front velocity vf = dxf/dt is:  

 
( ) ( )
( ) ( )

* *

0
* *

6 1 / 1 1 4 1 /

2 1 / 1 1 4 1 /

f f
f

f f

B B B B
v v

B B B B

µ µ

µ µ

− + + + −
=

− + + + −
 (V.13) 

Here 

 
2

0 0

2 2 2
0

/ 4 / 2

4 / 4
D

D

v D d a

D d a

β γ α µ

γ β

= Γ = Γ

∆ = =
 (V.14) 

                                                 

10 These terms are small in the vicinity of the front and therefore unimportant for the 

calculation of the front properties. For a similar treatment see, e.g., Ref. [102]. 
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and ( )f fB B t≡ . The solid lines in Figure  V-3 show Ψ, Eq. (V.11), for different 

locations of the front xf. The evolution of Ψ describes the propagation of the ordered 

phase. 

We discuss here the front velocity vf (Eq. (V.13)) and the front width ∆, Eq. 

(V.12). We first note that vf and ∆ do not depend explicitly on time or applied field, 

but they do depend on Bf, the local induction at the front. Several important 

conclusions may be drawn from these equations: 

1) As Bf approaches Bss the velocity approaches zero. (The vf(Bf) dependence 

is described by the solid line in Figure  IV-12.)  

2) The motion of the front toward the sample edge is accompanied by an 

increase of the induction Bf at the front, resulting in a decrease of the velocity with 

time. 

3) The front width D decreases with the increase of b, implying that for a 

“stronger” first-order transition, the front is steeper. Also from Eq. (V.12), it is 

obvious that the exchange coefficient D causes the front to be smeared. In addition, 

increasing D and/or the damping coefficient Γ results in an acceleration of the front 

motion (see Eq. (V.13)). 

V.7 Solution of the general case (with flux creep) 

Thus far we have demonstrated dynamic coexistence of ordered and transient-

disordered vortex phases, with a sharp interface between them, assuming time-

independent induction distribution with a constant gradient. In high-temperature 

superconductors, however, the induction distribution varies significantly with time, 

due to flux creep. [67] In addition, one may expect different flux creep laws for the 

different vortex phases. As a result, a break is expected to appear in the induction 
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profiles. Thus, as we show below, the nucleation of the ordered vortex phase is 

manifested by the appearance of a break in the induction profiles; the growth of this 

ordered phase is manifested by movement of the break toward the sample edge (see 

Chapter IV). The location of the break in the induction profiles is expected to coincide 

with the location of the moving front of the order parameter. 

To demonstrate this scenario, we solved the LK equation (V.1) numerically, 

allowing for flux creep. 

If the inhomogeneous phase transition is considered in the framework of the 

local driving parameter (magnetic induction) model, where the magnetic induction 

obeys the Maxwell's equations:  

 4B j
c
π

∇× =
K K

 (V.15) 

and  

 1 dBE
c dt

∇× = −
KK

 (V.16) 

The electric field E is induced by the moving vortices; the electric field vs. 

current density dependence (E(j)) is assumed to be the unique electrodynamic 

characteristic describing the distinct vortex phase. It is natural to generalize this 

dependence to the case of coexisting vortex phases by introducing the E(j,Y/Y0) 

function, which should have the following  asymptotes: E(j,Y/Y0=0) = E1(j) and 

E(j,Y/Y0=1) = E2(j). Without affecting generality, we define the function E(j,Y/Y0) 

to match the asymptotic behavior in the following way: 

 1 2
0 0

( , ) ( ) 1 ( )E j E j E j
ν ν    Ψ Ψ

 Ψ = − +   Ψ Ψ     
 (V.17) 

where n is a constant of order 1. 
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We note that the precise form of this function is not essential and has a minor 

effect on the final result, provided the interface between the two phases is narrow 

enough. 

As before, we assume an initial disordered phase throughout the entire sample, 

Y(t=0,x) = 0. 

Equations (V.1), (V.3), (V.15), (V.16), and (V.17), in one dimension, define a 

full set of partial differential equations with four variables: Y(x,t), B(x,t), E(x,t) and 

j(x,t). 

 To solve this set of equations numerically, we define dimensionless 

parameters: b=B/B*, j´=4πJd/(cB*), ' /x x d= , 2' /t tβ γ= Γ , and 

( )**
0

2'
B

γ
β

Ψ Ψ
Ψ = =

Ψ
. Eq. (V.1) then becomes:  

 [ ]
2

2 3
2

' ' 1 11 ( ') ' ' ' '( ', ')
' ' 2 3Da b x f x t

t x
µ∂Ψ ∂ Ψ

= + − Ψ + Ψ − Ψ +
∂ ∂

 (V.18) 

where f and
0

2' ff γ
βα

=  are a real and dimensionless noise that must be introduced in 

the numerical solution. 

The values of the (dimensionless) parameters used in the numerical 

calculations are based on experimental measurements. In particular, from the fit of Eq. 

(V.13) to the experimental data of vf(Bf) in Figure  IV-12, we estimate µ = 1.5; thus, 

Bss/B* = 1.148 and B**/B* = 1.166 (11). A value of 10-4 for 
2

0

0

2
D

va
d

µ
α

 
=  Γ 

(see Eq. 

                                                 

11 Note that this value of µ corresponds to a first-order transition, namely a coefficient before 

the cubic term in the free energy functional does not vanish (b ≠ 0). As a result B* < Bss < B**, thus 
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(V.14)) is estimated from the experimental value 0 20 /v m sµ≈ obtained from the 

same fit. A value of 1
0 0~ 10sα −Λ Γ ≈  is estimated from the time elapsed between 

switching on the external field and the appearance of a break in the induction profile. 

A typical value of 300d mµ� for the sample half width was used. Based on the 

analysis of magnetic relaxation (see section  IV.2.2), we take nE j∝  with n = 1.9 and 

n = 3 for ordered and disordered phases, respectively. In addition, a noise level of 

' 4
max 10f −=  is assumed. 

The system of equations completed by boundary and initial conditions has 

been solved numerically utilizing an Euler method. The unit space interval was 

divided into 200 segments, and a time step of 2.5¥10-3 (in dimensionless units) was 

used, providing stability for the numerical procedure. 

The results of the numerical solution for Ba/B* = 1.1 are shown in Figure  V-4. 

Figure  V-4a shows the spatial dependence of the order parameter at different times. 

The nucleation appears at the sample center at a dimensionless time ' 10t ∼ after the 

field is switched on, forming a sharp front that propagates toward the sample edge. 

Note that the nucleus in Figure  V-4a is much wider than that obtained for a constant 

gradient, see Figure  V-3. This is because, at the initial stages of the nucleation (in the 

case of relaxing magnetic profile), the front of the entering vortices has not reached 

the sample center before the nucleation has started. The motion of this front toward 

the sample center, due to magnetic relaxation, continues simultaneously with 

nucleation process. As a result, the nucleus is smeared between the point at which the 

nucleation starts and the sample center.  

                                                                                                                                            

allowing for supercooling and superheating effects. The possibility for superheating provides an 

explanation for the observation of values of Bf larger than Bss (see Section  IV.2.4). 
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Figure  V-4. Order parameter (a) and induction (b) profiles for 1 1
1 1( ) | |nE J k J J −=  and 

2 1
1 2( ) | |nE J k J J −= , where n1=3 and n2=1.9 (see Section IV.2.2). The profiles are shown 

for dimensionless times 't = 2 (corresponding to maximal gradient), 4, 6, 8, 10, 11, 13, 16, 
20, 25, 30. 

a) 

b) 
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Consequently, the front of the ordered state and the break in the magnetic induction 

will appear not in the sample center, but near the point at which nucleation has started. 

This is in agreement with the experimental result shown in  IV.2.2, Figure  IV-5. Figure 

 V-4b shows the time evolution of the induction profiles during the nucleation and 

growth processes. A sharp break in the profiles appears at the location of the front of 

the order parameter, after the nucleation is completed. As expected, the break in the 

induction profile and the front of the order parameter move together toward the 

sample edge12. 

It is important to note that, in a number of early profiles, the sharp break (the 

interface) in Figure  V-4b is found outside the region of phase metastability (i. e. Bf < 

B*), namely, the moving interface separates unstable (not metastable) and stable 

vortex phases.   

The theoretical predictions described above are confirmed experimentally in 

BSCCO crystals (see Chapter IV). In particular, a break in the induction profile was 

recorded following a sudden application of external field of intensity close to the 

order-disorder transition field Bss. This break moves toward the sample edge at a 

velocity that depends only on Bf, the value of the induction at the break. Thus, the 

dependence of vf on Bf is not affected by magnetic relaxation. The measured velocity, 

depicted in Figure IV-13, is a function of the induction for different applied fields. 

                                                 

12 The numerical solution does not exhibit breaks in the profiles if the magnetic relaxation is 

too fast (e.g., J ~ exp(-t/t0) while t0 << 1/L0) or if the critical current is too low (j01 ~ j02  aD/m). This is 

because the requirement for a relatively large gradient, mandatory for the front development, Eq. (V.9), 

is not satisfied in these cases. Thus, in YBa2Cu3O7-d, for which *~ssB B B<<� , a homogeneous phase 

transformation is expected rather than front propagation. 
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The analytical curve, Eq. (V.13), depicted by a solid line in this figure, is in good 

agreement with the experimental results. The results of vf(Bf), obtained in the 

numerical calculations for different applied fields Ba (as well as for different magnetic 

relaxation rates), are shown in Figure  V-5.  
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Figure  V-5. vf(Bf) curves from numerical calculations for different applied fields 
(symbols), together with the analytical solution (solid curve). 

These curves converge after short transient period of time corresponding to a 

nucleation and front establishment, with the analytical curve obtained without taking 

into account magnetic relaxation. 

Note that two velocities govern the vortex dynamics in the process of the 

phase transformation: the interface velocity vf, and the flux velocity, vF, due to creep. 

The latter may erode the interface if the ratio / F ordvε τ= ∆  is small. (Here D is the 

interface thickness and 0~ 1/ordτ αΓ  is the accommodation time for the bundle of 

vortices that found themselves in a phase with another symmetry, adapting to a new 

environment.)  It immediately reads that our theory is correct under condition 
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4F fv vµ<< , implying that in the vicinity of Bf ~ Bss (where vf Æ 0), our theory is not 

valid. We estimate the width of this vicinity by substituting a typical fluxon velocity, 

of 10 mm/s. We thus conclude that our theory may be applied in the whole induction 

range, except a very narrow range in the vicinity of Bss, for which vf  2 mm/s (see 

Figure IV-12). 

Another important observation is that, as in the experiment, the break appears 

not exactly in the center (see Figure IV-5). This happens because the nucleation of the 

ordered phase starts when the vortices have not yet penetrated the sample fully. Then 

the nucleation starts near the momentary position of the propagating flux front. 

V.8 Dynamic fishtail 

In this Section, we show that our theoretical approach based on the LK 

dynamic equation is also capable of explaining the intriguing issue of the time 

dependence of the second peak anomaly. [30, 67, 104] 

 Figure  V-6 (taken from Ref. [104]) demonstrates that the location and form of 

the features related to the second peak anomaly may vary with time. This led to the 

concept of the dynamic “fishtail,” relating the anomaly to a complicated relaxation 

characteristic associated with a collective creep [8, 105] (see Introduction to Chapter 

III). However, recent measurements of sharp “fishtail” [11] and other works, 

including ours (see Chapter III), supported the possibility of the phase transition 

scenario. This requires a new explanation for the fact that the features of the 

magnetization curve related to this transition are time dependent. 
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Figure  V-6. Magnetization hysteresis loop for different time windows measured in 
BSCCO taken from Ref. [104]. It is evident that there is no “fishtail” anomaly at short 
time windows. Moreover, after it appears the onset of the second peak moves with time 
toward higher fields. 

Our theoretical approach gives a natural explanation to the dynamics of the 

features of the second peak anomaly. We performed a numerical calculation similar to 

that of Figure  V-4 for different applied fields (H) and extracted the global magnetic 

moment, as well as the local gradient of magnetic induction (proportional to local 

current density). The results are shown in Figure  V-7.  

Similar to the experimental results of Figure  V-6, the onset of the second peak 

anomaly is not observed at short times. In the framework of our model, this is 

expected, because at short times, immediately after field application, a transient-

disordered phase appears. This transient-disordered state is initially the only phase 

present in the whole range of fields. 

 At later times, the ordered state starts to nucleate near the center of the 

sample. This nucleation occurs earlier for lower induction values (Eq. (V.7)), 

explaining why the dip in the magnetization curves starts to develop at lower fields 
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and then moves toward higher fields, causing a movement of the onset of the second 

peak. 

Note that in the local curves of dB/dx vs B (Figure  V-6 and Figure  V-7b) the 

sharp growth of the absolute value of dB/dx occurs when the front of the growing 

ordered phase passes through the location probed. This growth is smoother in the 

experimental curve (Figure  V-6), because the gradient is calculated as the difference 

between two values of local induction measured at different Hall probe array elements 

(see Chapter II). Therefore, the gradient is averaged on the length scale of this 

macroscopic distance. 

At long times, Bon approaches Bss. This is because the growth of the ordered 

phase is prohibited for local induction values larger than Bss. It is important to 

distinguish between measurements where the external field is raised sharply and then 

the system is allowed to relax, and measurements with constant sweep rate. In the 

latter, if the rate is decreased, Bon may increase up to B**. 
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Figure  V-7. Numerical calculation of a) global M(H) curve and b) local dB/dx curve at 
x/d=0.8, for different time windows. Arrows signify the direction of time and external 
field in the experiment. 

V.9 Summary and conclusions 

In this chapter, we introduced a novel approach to analyzing vortex dynamics 

associated with the solid-solid vortex phase transition. We demonstrated that the 

time 
H 

time 
H 

b) 

a) 

H 

H 
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Landau-Khalatnikov dynamic equation provides a description of the nucleation and 

growth processes of the vortex quasi-ordered phase. We derived analytical 

expressions for the parameters, describing these processes for induction distribution 

with a constant gradient. Our analytical expression for the front velocity fits well the 

experimental results with a non-zero value of a coefficient before the cubic term in the 

free energy functional. The non-zero value of this coefficient suggests the vortex 

solid-solid phase transition is of a first-order nature.  

We also showed that, for a high enough gradient (for instance, BSCCO at 

relatively low temperatures) of the induction, the vortex ordered phase is nucleated 

locally near the sample center (or near the entering flux front), where the induction is 

minimal and propagates in a front-like manner, even if the induction corresponds to a 

non-stable region of the phase diagram. For relatively low gradients (e. g., in YBCO 

or in BSCCO at high temperatures), the development of the ordered phase is 

homogeneous, rather than front like. We also predicted that reduction of the sample 

size would cause a crossover from a front-like to a homogeneous growth. 

An interesting by-product of this work is the explanation of the “dynamic 

fishtail”. We showed that the onset of the second peak is a direct consequence of the 

coexistence of different vortex solid phases, and the dynamics of the onset is dictated 

by the dynamics of the vortex ordered phase formation. The onset in the infinite time 

limit is approaching Bss. 
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VI Summary and conclusions 

This work describes a comprehensive study of the vortex solid-solid transition 

in high-temperature superconductors. We investigated the nature of the solid vortex 

phases, the phase transition between them, and the process of their formation. The 

main achievements of this work are summarized below. 

Hall-probe measurements of the anomalous second magnetization peak 

(“fishtail”) in Nd1.85Ce0.15CuO4-d (NCCO), detwinned YBa2Cu3O7-d (YBCO), and 

Bi1.6Pb0.4Sr2CaCu2O8+d (Pb-BSCCO) - materials with strongly different values of 

critical temperature Tc and anisotropy ε - indicate the existence of a solid-solid vortex 

phase transition similar to that observed earlier in Bi2Sr2CaCu2O8+d (BSCCO). We 

identified the transition induction Bss in these materials by employing local magnetic 

measurements of induction vs. field, temperature, and time. In YBCO, for example, 

the transition was assigned to a pronounced kink in the magnetization (m vs. H) 

curves, observed for the first time in this work. The location of this kink in the (B,T) 

phase diagram of YBCO coincides with a kink in magnetization vs. temperature (m vs. 

T) curves and a minimum in the relaxation rate. The transition induction is not moving 

with time, in contrast to the behavior observed for another characteristic field, Bp, the 

field of the second peak. 

Although the temperature dependence of the transition lines Bss(T) in different 

materials is qualitatively different, we succeeded in describing these dependences by 

the same model: the model of disorder-induced transition. We showed that the factors 

responsible for these qualitative differences are: the critical temperature Tc, pinning 

parameter γ, anisotropy ε, penetration depth λ, coherence length  ξ, interlayer distance 

s, and the pinning mechanism (dl or dTc). 
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We found, in particular, that in the temperature range in which the thermal 

energy is small, compared with pinning and elastic energies, Bss dependence on 

temperature is implicit – Bss(T) = Bss(ξ(T)) – and Bss(ξ) dependence is unique for a 

given type of pinning. In NCCO, for example, for which Tc is lower than the 

depinning temperature Tdp, Bss(T) decreases monotonously in the whole temperature 

range, up to Tc. In YBCO and Pb-BSCCO, in which Tc is higher than Tdp, Bss(T) 

increases drastically, starting from T = Tdp, due to the sharp weakening of the pinning 

energy. The type of pinning mechanism determines the dependence of Bss on ξ. This 

is especially important for T < Tdp, where the strong increase in Bss caused by thermal 

depinning does not interfere. If the pinning is of dTc-type then, for T < Tdp, Bss(T) is a 

decreasing function of temperature. If the pinning is of dl-type, Bss increases with 

temperature. This gives an effective tool for determination of pinning mechanism in 

HTS materials. In particular, we identified dTc-pinning in NCCO and Pb-BSCCO, and 

dl-pinning in YBCO. 

To summarize this part of the work, we showed how to implement the 

disorder-induced transition model in analyzing the temperature dependence of the 

solid-solid transition in HTS materials. We also showed that it is possible to utilize the 

behavior of the transition line to extract valuable information, such as the type of 

microscopic pinning mechanism. Our approach has been adopted by other authors in 

analyzing the vortex solid-solid transition in other HTS, associating the second peak 

anomaly with a vortex disorder-induced transition. We, therefore, conclude that the 

disorder-induced transition is a general phenomenon responsible for the second peak 

anomaly in most of the HTS. 

In the second part of this work we performed a pioneering study of the process 

of formation of the solid vortex phases, above and below the vortex solid-solid 
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transition line Bss. Our experiments allowed, for the first time, observation of the 

transient-disordered vortex state in BSCCO. This state is created after a sudden 

application of magnetic field, due to rapid injection of vortices through the surface. 

Using our high temporal resolution magneto-optical system, we observed the 

nucleation of the ordered phase and followed the growth of the equilibrium ordered 

and disordered vortex phases. We characterized these processes both experimentally 

and theoretically. In particular, we found that the velocity of the front of the growing 

ordered phase depends on the local induction at the front and goes to zero as the value 

of this induction approaches Bss. This finding allows a precise determination of Bss. 

To describe the observed process of nucleation and growth of the solid vortex 

phases, we developed a theoretical approach, based on the Landau-Khalatnikov (LK) 

dynamic equation. We showed that this process can be described by the dynamics of a 

scalar order parameter, conjugate to the magnetic characteristics of the vortex matter. 

On the basis of this analysis, we derived analytical expressions for the parameters 

describing the nucleation and growth of the ordered vortex phase. 

Our analysis also provides conditions for front-like growth of the equilibrium 

vortex phase. We found that, for a high enough induction gradient, the vortex ordered 

phase is nucleated locally near the sample center, where the induction is minimal, and 

propagates in a front-like manner. For a relatively small gradient, the growth of the 

ordered phase is homogeneous. We also predicted that reduction of the sample size 

would cause a crossover from a front-like to a homogeneous growth. In addition, our 

analysis is capable of explaining the experimentally measured time evolution of the 

onset of the second peak. We found that the “dynamic fishtail” behavior is a direct 

consequence of coexistence of different vortex solid phases, and the dynamics of the 
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onset is dictated by the dynamics of the vortex ordered phase formation. The onset in 

the infinite time limit approaches the Bss value.   

The success of this theoretical analysis, based on the LK dynamic equation for 

the order parameter, provides additional evidence for the phase transition origin of the 

“fishtail” in BSCCO. Moreover, our analytical expression for the front velocity fits 

well the experimental results for the field dependence of the front velocity with a non-

zero cubic term in the free energy functional, thus indicating the first-order nature of 

the solid-solid phase transition.  

The results presented here provide insight into the nature of the solid vortex 

phases and the process of their formation. At the same time, this work opens a door 

for future studies, such as investigation of the influence of different correlated and 

uncorrelated disorders on the solid-solid transition, conditions for the appearance of 

the transient-disordered state, influence of transport current on the process of 

nucleation and growth, and effects of temperature and geometry on nucleation and 

growth of equilibrium vortex phases. 
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התוצאות שמובאות בתיזה זאת נותנות היבט חדש על טבע© של הפאזות , לסיכו§ 

. כי על בטמפרטורות גבוהותהמוצקות של מערבולות ועל מנגנו© היווצרות© של פאזות אלה במולי

סדר �השפעת הסוגי§ השוני§ של אי: במקביל העבודה פותחת אופקי§ חדשי§ למחקר עתידי כגו©

השפעת זר§ על תהלי¤ הגירעו© , איפיו© התנאי§ להיווצרותו של מצב לא מסודר ארעי, על המעבר

 והגידול בחומרי§ ובחינה ניסיונית של התחזיות לגבי הגירעו©, והגידול של הפאזות המוצקות

 .טמפרטורות שונות וגאומטריות שונות של דגמי§, שוני§



 ו 

.  אל ער¤ שמתחתיו�Bssביצענו ג§ ניסיונות בה§ השדה מורד באופ© חד מער¤ שמעל ל

המסודרת מופיעה ליד קצה הדג§ מכיוו© שבניסיונות אלה ש§ בניסיונות אלה הפאזה 

 .הפאזה המסודרת גדלה ומתפשטת לכוו© מרכז הדג§. האינדוקציה היא מינימלית

�כדי להסביר תוצאות חלוציות אלה פיתחנו תיאוריה המתבססת על משוואת לנדאו

 את התוצאות התאוריה שפיתחנו משחזרת. לדינמיקה של פרמטר סדר סקלרי) LK(חלטניקוב 

מתארת את תהלי¤ הגירעו© מבחינת , מנבאת תנאי§ להיווצרות ויציבות החזית, הניסיוניות

 . מהירות החזית ורוחבה–סקלות הזמ© והמרחב ומתארת את תהלי¤ הגידול , מיקומו

המודל נפתר אנליטית עבור מקרה של גרדיינט שדה קבוע ונומרית עבור מקרה כללי 

פיתחנו . י המודל"מצאנו כי התהלי¤ מתואר היטב ע. של מערבולותהלוקח בחשבו© רלקסציה 

. ביטויי§ אנליטיי§ עבור פרמטרי§ שמתארי§ את תהליכי הגירעו© והגידול של הפאזה המסודרת

 בטמפרטורות �BSCCOכמו ב( גבוה מספיק �Bssהראינו כי עבור יחס הגרדיינט של האינדוקציה ל

במקו§ ) או ליד החזית של מערבולות נכנסות( מרכז הדג§ הפאזה המסודרת מופיעה ליד, )נמוכות

בו האינדוקציה מינימלית ומתקדמת בצורת חזית אפילו א§ ער¤ האינדוקציה מתאי§ לאזור הלא 

היחס בי© , לעומת זאת, א§. של עקומת האנרגיה החופשית) מחו¯ לאזור המטאסטבילי(יציב 

אז הגידול )  בטמפרטורות גבוהות�BSCCO ב או�YBCOכמו ב( הוא נמו¤ מספיק �Bssהגרדיינט ל

אנו ג§ מנבאי§ כי הקטנה של גודל הדג§ תגרו§ למעבר מגידול . של המצב המסודר הוא הומוגני

 .בצורת חזית לגידול הומוגני

הראינו ג§ כי החישוב הנומרי שלנו עבור התפתחות© בזמ© של עקומות המגנטיזציה מתאר 

 ”fishtail”�לתופעה של ה, המבוסס על התיאוריה, ו הסברנתנ. היטב את העקומות הניסיוניות

של המגנטיזציה לקראת השיא השני היא השלכה ישירה של קיו§ ) onset(תחילת הגידול : הדינמי

ידי דינמיקה של �בעת שדינמיקה של תחילת גידול זו מוכתבת על, שתי הפאזות המוצקות השונות

 .בגבול התרמודינמי �Bssקרבת לתחילת הגידול מת. היווצרות הפאזה המסודרת

 בהסבר התוצאות הניסיוניות שלנו מהווה עדות נוספת חזקה LKההצלחה של משוואת 

יתר על . �BSCCOשמקורו של השיא השני האנומלי הוא במעבר פאזה במצב המערבולות ב, לכ¤

ירות הביטוי האנליטי עבור המהירות של החזית מתאי§ לתוצאות ניסיוניות של תלות המה, כ©

ממצא זה . באינדוקציה א§ הער¤ של המקד§ של האיבר הקובי באנרגיה החופשית איננו מתאפס

 .תומ¤ בטענות על הסדר הראשו© של מעבר הפאזה
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אומצה גישה דומה על ידי , בעקבות עבודה זאת. כידהמידע נוס­ בעל ער¤ כגו© מידע על מנגנו© הל

. ידינו�מחברי§ אחרי§ לצור¤ ניתוח של אנומלית השיא השני בחומרי§ אחרי§ שלא נחקרו על

ידי מעבר בי© הפאזות �מחברי§ אלה הגיעו למסקנה כי האנומליה נגרמת על, בדומה למסקנותינו

סדר �כי מעבר הפאזה המושרה על ידי אי, איפא, אנו מסיקי§. סדר�ידי אי�המוצקות המושרה על

 .הוא מעבר כללי במוליכי על בטמפרטורות גבוהות והוא הגור§ העיקרי לאנומלית השיא השני

צפייה , בפע§ הראשונה, בחלק השני של העבודה אנו מתארי§ ניסיונות דינמיי§ שאפשרו

לל גירעו© וגידול של הכו, �BSCCOישירה בתהלי¤ ההיווצרות של פאזות המערבולות המוצקות ב

אופטית ייחודית בעלת רזולוציה גבוהה בזמ© �לצור¤ עבודה זו פיתחנו מערכת מגנטו. פאזות אלה

, אשר איפשרה לנו לגלות כי קוד§ לפאזות המוצקות התרמודינמיות) ms 40מסדר גודל של (

וצאה נוצרת פאזה לא מסודרת ארעית שמוזרקת לתו¤ מולי¤ על כת, המסודרת והלא מסודרת

בנוכחות   Ba  Bssלאחר הפעלה של שדה מגנטי חיצוני . מחשיפה פתאומית שלו לשדה החיצוני

ולאחר פרק זמ© קצר , מופיע מצב ארעי זה, )שהוא בדר¤ כלל תלוי בזמ©(גרדיינט של שדה מגנטי 

 הגרעי© מתחיל לגדול. ש§ האינדוקציה מינימלית, מופיע גרעי© של פאזה מסודרת ליד מרכז הדג§

 מסודרת –קיו§ דינמי בי© שתי פאזות מוצקות �כ¤ שנוצר מצב של דו, ולהתקד§ בצורה של חזית

איפיינו כמותית את התכונות הדינמיות של הפאזות האלה ומצאנו כי הפאזה הלא . ולא מסודרת

בי© היתר אייפינו את . מסודרת בעלת עוצמת לכידה חזקה הרבה יותר מאשר הפאזה המסודרת

E(j)ואת הזר§ הקריטי , תי הפאזות עבור שjc .הקיו§ של שתי הפאזות גור§ להיווצרות שבר �דו

החזית של המצב (הגבול בי© שתי הפאזות .  של האינדוקציה המגנטיתB(x)חד בפרופילי§ 

א§ . Bf = Bss שבנקודת הגבול ומתאפסת כאשר Bfנע במהירות התלויה באינדוקציה ) המסודר

�אזי הפאזה המסודרת גדלה עד שכל הדג§ נכבש על Bssמעבר  נמו¤ משדה הBaהשדה המופעל 

. Ba  Bssהתנהגות שונה מתרחשת עבור . והפאזה המסודרת מתעצבת בגבול התרמודינמי, ידה

�במקרה זה ההתרחבות של הפאזה המסודרת נעצרת בנקודה בה האינדוקציה על החזית שווה ל

Bssשי¤ עד שמצב תרמודינמי זה מתייצב בכל  והגידול של הפאזה הלא מסודרת התרמודינמית ממ

תופעה . דבר זה מתאפיי© בשינוי חד בכוו© תנועתו של השבר בפרופיל האינדוקציה המגנטית. הדג§

 .Bssזו מאפשרת קביעה מדויקת של ער¤ השדה 
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תו של קו מעבר בי© הפאזות המוצקות בטמפרטורות נמוכות      כי התנהגו, בנוס­, מצאנו

)T < Tdp (א§ מנגנו© הלכידה הוא מסוג : מושפעת ממנגנו© הלכידהδTc , אזBss(T) היא פונקציה 

מכא© .  היא פונקציה עולהBss(T)אז , δlמנגנו© הלכידה הוא מסוג , לעומת זאת, וא§, יורדת

תו¤ שימוש בשיטה זו מצאנו . לקביעה של סוג מנגנו© הלכידה יכולה לשמש Bss(T)שההתנהגות של 

 .δl מנגנו© הלכידה הוא �YBCOבעוד שב, δTc הוא  �Pb-BSCCO ו�NCCOכי מנגנו© הלכידה ב

חייבי§ , �Pb-BSCCOב  בטמפרטורהBssמצאנו כי על מנת לתאר את התלות של , כמו כ©

המוגדרי§ על ידי היחס בי© שלוש סקלות להביא בחשבו© מעברי§ בי© שלושה אופני לכידה שוני§ 

 הוא המרחק בי© sכאשר , (s < L0 < Lc),  (s < Lc < L), (Lc < s < L0): האור¤ האופייניות

הוא אור¤  �L0ו,  הוא אור¤ אופייני של קטע לכוד של מערבולתLc, העל בחומר�שכבות מוליכות

מעברי§ בי© אופני§ . אלסטיותאופייני לפלוקטואציות של פלקסו© הנובעות מהאינטרקציות ה

 . מתרחשי§ עקב האניזוטרופיה והטמפרטורה הקריטית הגבוהות יחסית�Pb-BSCCOאלה ב

י בדיקת התחזית שלו לגבי הערכי§ " ע�YBCOבחנו לעומק את ישימות המודל ב, בנוס­

ויי§ למרות שלא נית© לקבל ערכי§ של גדלי§ אלה באופ© ישיר מכיוו© שה§ תל. Tdp � וBss(0)של 

 נית© לבדוק התחזית עבור יחס בי© ערכי§ של – cL הקריטריו© של לינדמ© –בפרמטר בלתי ידוע 

השווינו בי© שני דגמי§ מאותו גידול גבישי . גדלי§ אלה עבור שני דגמי§ ע§ חוזק לכידה שונה

 0.64ל וער¤ ניסיוני ש �Tdp עבור היחס ב1.14 מול ער¤ תיאורטי של 1.25ומצאנו ער¤ ניסיוני של 

חיזוק נוס­ לישימות של , איפא, תוצאות אלה נותנות. Bss � עבור היחס ב0.5מול ער¤ תיאורטי של 

 .המודל

" שיא השני"לסיכו§ חלק זה של העבודה נית© להגיד כי במסגרת העבודה האנומליה של ה

, NCCO ,YBCO(החומרי§ שנבחרו . נחקרה במגוו© של חומרי§ מוליכי על בטמפרטורות גבוהות

Pb-BSCCO (§מדידות . היו בעלי טמפרטורה קריטית ואניזוטרופיה בתחומי§ שוניm vs. H    ,

m vs. T,ו �m vs. t בכל החומרי§ שנחקרו תומכות בקיומו של מעבר הפאזה בי© שתי הפאזות 

, למרות שהתלות בטמפרטורה של קווי מעבר הפאזה  בחומרי§ השוני§ שונה איכותית. המוצקות

 . סדר�י אי"מודל של מעבר המושרה ע, ר אותה בעזרת אותו מודלהצלחנו לתא

סדר לניתוח של �עבודה זאת הראתה כיצד נית© ליש§ את מודל המעבר המושרה על ידי אי

התנהגות קווי המעבר בי© הפאזות המוצקות בחומרי§ שוני§ וכיצד נית© לנצל ניתוח זה לקבלת 
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מדידות אלה תומכות ג§ ה© . (m vs. t)ביצענו ג§ מדידות של מגנטיזציה כתלות בזמ© 

: Bpהמידע החשוב הנוס­ שלמדנו ממדידות אלה נוגע לטיבו של שדה . בקיומו של מעבר הפאזה

של מערבולות ממנגנו© אלסטי למנגנו© " זחילה"ו© הבכל החומרי§ נית© ליחס שדה זה למעבר במנגנ

מעבר זה מציי© הופעה של חוסר סדר הקשור להופעת דיסלוקציות במבנה המערבולות . פלסטי

 .שמתגבר ככל שהשדה עולה

 בתחו§ השדות בה§ �NCCOב מופיע ג§ m vs. Tהשבר בעקומות , �YBCOבדומה ל

 NCCOעבור , m vs. H �שבר ב� חופ­ ל�m vs. T עבורו השבר ב�YBCOאול§ בניגוד ל. Bonנמצא 

הבדל זה מוסבר בעבודה . Bonלא חופ­ למיקומו של  (B,T)מיקומו של שבר זה בדיאגרמת הפאזות 

 �NCCOיורד ע§ טמפרטורה ב: זו כנובע מהתנהגות שונה של קו המעבר בי© הפזות המוצקות

 .�YBCOועולה ע§ טמפרטורה ב

מצאנו כי למרות ההבדלי§ האיכותיי§ בתלות של שדה בניתוח התאורטי של התוצאות 

תלות זו יכולה להיות , Pb-BSCCO � ו�NCCO ,YBCO בטמפרטורה בBssמעבר הפאזה 

המודל הזה מתאר את דיאגרמת . סדר�י אי" מודל של מעבר המושרה ע�י אותו מודל "מתוארת ע

, אנרגיה אלסטית: רגיההפאזות של מערבולות מגנטיות כנוצרת מתחרות בי© שלוש סקלות אנ

המעבר בי© הפאזה המוצקה המסודרת לבי© הפאזה הנוזלית . ואנרגיה תרמית, אנרגית לכידה

מתרחש כאשר האנרגיה האלסטית משתווה לאנרגיה התרמית בעוד שהמעבר בי© שתי הפאזות 

הראינו כי על מנת . המוצקות מתרחש כאשר האנרגיה האלסטית משתווה לאנרגית הלכידה

 המודל הזה צרי¤ להיות מיוש§ באופני§ שוני§ Bss(T)ר את ההתנהגויות השונות של להסבי

אנו מוצאי§ כי בגלל הטמפרטורה הקריטית הנמוכה שלו , לדוגמא, �NCCOב. לחומרי§ שוני§

נית© להתמקד בתחרות בי© האנרגיה האלסטית לאנרגית לכידה בלבד תו¤ הזנחת האנרגיה 

קיומו של מעבר פאזה בי© �לאי, בי© היתר, עובדה זאת גורמת (התרמית ברוב תחו§ הטמפרטורות

י "בטמפרטורה נקבעת ע Bssא§ כ© התלות של ).  �NCCOהפאזה המסודרת לפאזה הנוזלית ב

-Pb של Bss(T)לחישוב עקומות , �NCCOבניגוד ל. ξהתלות בטמפרטורה של אור¤ הקורלאציה 

BSCCOו � YBCOיות בטמפרטורות הגבוהות  יש לקחת בחשבו© פלוקטואציות תרמ

אור¤ הקורלאציה של לרקי© גדל מעריכית , T > Tdpעבור . Tdpמטמפרטורה של שחרור מלכידה 

עובדה זו משתקפת בהתנהגותו . ע§ הטמפרטורה מה שגור§ להאצה בירידה של אנרגית הלכידה

 .T = Tdp � בתור גידול פתאומי המתחיל בBss(T)של קו 



 ב 

שנו בשתי טכניקות מדידה מגנטיות לוקאליות בביצוע שני חלקי המחקר השתמ

 במער¤ של חיישני§ זעירי§ ועל מדידות של אפקט פארדיי Hallהמבוססות על מדידות של אפקט 

טכניקות אלה מאפשרות מיפוי של התפלגות האינדוקציה המגנטית על . אופטית�במערכת מגנטו

רו© מובהק במדידות של המצב לטכניקות אלה ית. פני הדג§ ברזולוציה מרחבית של מיקרוני§

 Hallהשימוש במערכי חיישני . על בו האינדוקציה המגנטית לא אחידה�הדיר של מוליכי�הבלתי

השתמשנו בה§ בחלק . מתאי§ למדידות בה© יש דרישה לרגישות גבוהה ועבודה בשדות גבוהי§

 הפאזות קרוב הראשו© של התיזה לצור¤ חקירת מעבר הפאזה בחומרי§ השוני§ ואפיו© דינמי של

 .לשווי משקל

אופטית מתגלה בחקירת תהלי¤ היווצרות© של הפאזות �העוצמה של הטכניקה המגנטו

יתרונה של . אופטית שנבנתה במסגרת עבודה זו�בחקירה זו השתמשנו במערכת מגנטו.  המוצקות

בי© קיו§ דינאמי �המערכת ה§ כושר ההפרדה הגבוה בזמ© ובמרחב המאפשר גילוי ומעקב אחר דו

תוצאות חלוציות אלה נתנו לנו מוטיבציה לפיתוח של תיאוריה חדשה המתבססת על . שתי פאזות

 .חלטניקוב המתארת את דינמיקת פרמטר הסדר�פתרונות אנליטיי§ ונומריי§ של משוואת לנדאו

 , Nd1.85Ce0.15CuO4-d (NCCO)�ב) m vs. H(המדידות של מגנטיזציה כתלות בשדה 

YBa2Cu3O7-d (YBCO) ,ו�Bi1.6Pb0.4Sr2CaCu2O8+d (Pb-BSCCO)  מגלות גידול אנומלי של

, מדידות אלה מגלות ג§. Bonבאינדוקציה לוקאלית BSCCO �העקומות בדומה לשיא השני ב

על , Bk(T), המיקו§ של שבר זה. �YBCOב) m vs. H(שבר בולט בעקומות מגנטיזציה , לראשונה

יקומו של שבר חד אחר בעקומות המגנטיזציה  חופ­ למYBCO של (B,T)דיאגרמת הפאזות 

 מתגלה בדיוק בתחו§ השדות בו נמצא m vs. T השבר בעקומות � m vs. T)(כתלות בטמפרטורה  

Bk . השדהBk אינו זז ע§ הזמ© בניגוד לשדה אופייני אחר Bp ,השדה של השיא השני .Bk©מאופיי  

 בנוס­ כי נית© לכייל את עקומות מצאנו. ג§ כ© במינימו§ של קצב הרלקסציה של מערבולות

 �Bkאול§ לשדות הנמוכי§ מ, י גורמי כיול מתאימי§"המגנטיזציה שנמדדו בטמפרטורות שונות ע

ג§ עובדה זו תומכת בקיו§ שתי פאזות שונות מתחת . ולשדות הגבוהי§ ממנו דרוש כיול שונה

ודה זו זיהינו שדה זה  שנמנו לעיל ה© הסיבה לכ¤ שבעבBkהתכונות של השדה . ומעל לשדה זה

 .�YBCOבתור המעבר בי© הפאזות המוצקות ב



 א 

 תקציר

על �נפתח מחדש לאחר הגילוי של מוליכי, על שנחשב כמעט סגור�התחו§ של מוליכות

 ביותר של התחו§ המחודש הזה הוא דיאגרמת §אחד הנושאי§ המענייני. בטמפרטורות גבוהות

 ξ ההער¤ היותר קט© של אור¤ הקורלאצי. הפזות העשירה של מבנה המערבולות המגנטיות

 ושל λוהער¤ היותר גדול של אור¤ החדירה , נבנציונליי§העל הקו�בהשוואה למוליכי

על �גורמי§ למער¤ המערבולות להיות ר¤ יותר ופחות לכוד במוליכי, ε/1האניזוטרופיה 

כדוגמא נית© לראות את דיאגרמת . וכתוצאה מכ¤ לדיאגרמת פזות מורכבת, בטמפרטורות גבוהות

 mSRמדידות , ות של מדידות מגנטיותתוצא. Bi2Sr2CaCu2O8+δ (BSCCO)הפזות המגנטית של 

בחומר זה מראות כי קיימות לפחות שלוש פזות של מערבולות  ומדידות של פיזור נויטרוני§

.  מסודרת ופאזה נוזליתלאפאזה מוצקה , )או כמעט מסודרת(פאזה מוצקה מסודרת : מגנטיות

י קפיצה חדה "יות עלהבדיל ממעבר פאזה בי© מוצק מסודר לנוזל אשר מתאפיי© במדידות מגנט

המעבר בי© הפאזה המוצקה המסודרת לפאזה המוצקה הלא מסודרת , במגנטיזציה ההדירה

התרחבות אנומלית זו נקראת . הדירה�הלאמתאפיי© בהתרחבות חדה של עקומת המגנטיזציה 

א¤ הצורה . התנהגות דומה נצפתה ג§ במדידות של חומרי§ אחרי§. ”fishtail“או " השיא השני"

 . החדות והמיקו§ השוני§ של השיא השני הביאו להסברי§ שוני§ שלו בחומרי§ השוני§, ההשונ

בחלק הראשו© של תיזה זו נעשה ניסיו© למצוא מקור משות­ להופעת השיא השני 

 �ו, Nd1.85Ce0.15CuO4-d ,YBa2Cu3O7-d �מדדנו את אנומלית השיא השני ב. בחומרי§ השוני§

Bi1.6Pb0.4Sr2CaCu2O8+d.נה האפשרות להסביר את האנומליה בתור מעבר פאזה שבי©  נבח

על מנת להגשי§ מטרה . �BSCCOהפאזה המסודרת לפזה הלא מסודרת בדומה לזה שמתרחש ב

מצאנו תאור . זו בחנו עדויות לקיו§ מעבר הפאזה בחומרי§ השוני§ וקבענו את מיקומו האפשרי

�י אי"עזרת המודל של המעבר המושרה עבחומרי§ השוני§ ב, Bss(T), כמותי של קו מעבר הפאזה

סדר ודנו בהבדלי§ בצורות קווי המעבר על ידי ההבדלי§ בערכי§ של הפרמטרי§ המאפייני§ את 

 .מולי¤ העל בחומרי§ השוני§

של תהלי¤ היווצרות , ניסיוני ותאורטי, בחלק השני של התיזה מתואר מחקר חלוצי

 .הפאזות המוצקות



IV.2.2קיו§ דינמי בי© שתי פאזות � דו(Ba  ~ Bss)……....…….…..……58 

IV.3.262....………………………………………מימדיות � הדמיות דו 

IV.4.2תנועה לא מונוטונית של החזית   (Ba   Bss) ……… ..…….........63 

IV.365...…………….………………………… פרשנות לתוצאות הניסיוניות 

IV.467.........……….………………….. קצבי גידול של הפזות התרמודינמיות 

IV.569.…………….………………….…. ניסיונות של הורדת שדה פתאומית 

IV.674…………….…………………….………………… סיכו§ ומסקנות 

V .76….……..ות המוצקות במערכת המערבולותתאור תאורטי של גרעו© וגידול של הפאז 

V.176…..…….……………………………………………… פרמטר הסדר 

V.277….…..……….………………………… פונקציונל של אנרגיה חופשית 

V.379.……….……………………………….……………… תנאי התחלה 

V.479………....…………………………………………….. גרדיאנט קבוע 

V.5©80.…………...………………………………………..… תהלי¤ הגרעו 

V.682…….………...……………………………………..… תהלי¤ הגידול 

V.7 84……..….………….. )ע§ רלקסציה של מערבולות( פתרו© במקרה הכללי 

V.8 fishtail91..…….………………..…………………….………… דינמי 

V.994..……….…………………………………………… סיכו§ ומסקנות 

 96………………...………………………….……………סיכו§ ומסקנות: VIפרק 

 100…….......................……….……………………………רשימת פירסומי§: נספח

 103.....................................................................................................רשימת מקורות

 

 

 

 

 



 תוכ© הענייני§

 1.……………………………………………………………………הקדמה: Iפרק 

 6….…………………………………………………….המערכות הנסיוניות: IIפרק 

II.1 מערכי§ של חיישני Hall............................. ............................................7 

II.29......................................................................אופטית � הטכניקה המגנטו 

II.1.29.................................................אופטיי§ � האינדיקטורי§ המגנטו 

II.2.2 §15.......................................................................... עיבוד הנתוני 

II.3§16........................................................................... גאומטריה של הדגמי 

 17.............……………...........................סדר �ידי אי�מעבר פאזה המושרה על: IIIפרק 

III.1§19.………………………………… זיהוי מעבר הפאזה בחומרי§ השוני 

III.1.1 Nd1.85Ce0.15CuO4-d…………....……………………………19 

III.2.1 YBa2Cu3O7-d…...…………………………………………..29 

III.3.1 Bi1.6Pb0.4Sr2CaCu2O8+d……………………………….........39 

III.242...............………סדר� ניתוח תיאורטי של מעבר פאזה המושרה על ידי אי 

III.1.2 פיתוח של נוסחה לשדה המעבר Bss(T)................ ………… .….43 

III.2.2 Nd1.85Ce0.15CuO4-d…………………………………............44 

III.2.2 YBa2Cu3O7-d…………………………………………...…..46 

III.3.2 Bi1.6Pb0.4Sr2CaCu2O8+d………………………………...…..49 

III.352.......................………………………………………קנות סיכו§ ומס 

 54...……….….………גרעו© וגידול של הפאזות המוצקות במערכת המערבולות: IVפרק 

IV.154………………….……………………………………… רקע ניסיוני 

IV.256..….…....…….…………………… ניסיונות של העלאת שדה פתאומית 

IV.1.2 עד לשיווי משקל                    מכניסת שט­ ראשונה ו– הדמייה מגנטית

)Ba << Bss(……................……………….….………….….………56 



 

 עבודה זאת נעשתה בהדרכתו של 

 פרופסור יוס­ ישורו©

 איל©�מ© המחלקה לפיסיקה של אוניברסיטת בר



סדר במערכת מערבולות �מעבר פאזה המושרה על ידי אי

 על בטמפרטורות גבוהות�מגנטיות במוליכי

 

 

 "דוקטור לפילוסופיה"חיבור לש§ קבלת תואר 

 

 
 מאת 

 דמיטרי גילר

 המחלקה לפיסיקה

 

 

 

 

 

 

 

 איל©�הוגש לסינט של אוניברסיטת בר

    ב              "תשס'ה, ג©                        אדר�רמת


